Atnaujinkite slapukų nuostatas

El. knyga: Period Functions for Maass Wave Forms and Cohomology

Kitos knygos pagal šią temą:
Kitos knygos pagal šią temą:

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

The authors construct explicit isomorphisms between spaces of Maass wave forms and cohomology groups for discrete cofinite groups $\Gamma\subset\mathrm{PSL}_2({\mathbb{R}})$.

In the case that $\Gamma$ is the modular group $\mathrm{PSL}_2({\mathbb{Z}})$ this gives a cohomological framework for the results in Period functions for Maass wave forms. I, of J. Lewis and D. Zagier in Ann. Math. 153 (2001), 191-258, where a bijection was given between cuspidal Maass forms and period functions.

The authors introduce the concepts of mixed parabolic cohomology group and semi-analytic vectors in principal series representation. This enables them to describe cohomology groups isomorphic to spaces of Maass cusp forms, spaces spanned by residues of Eisenstein series, and spaces of all $\Gamma$-invariant eigenfunctions of the Laplace operator.

For spaces of Maass cusp forms the authors also describe isomorphisms to parabolic cohomology groups with smooth coefficients and standard cohomology groups with distribution coefficients. They use the latter correspondence to relate the Petersson scalar product to the cup product in cohomology.
Introduction vii
Chapter 1 Eigenfunctions of the hyperbolic Laplace operator
1(20)
1 Eigenfunctions on the hyperbolic plane
1(3)
2 Principal series
4(6)
3 Boundary germs and transverse Poisson transform
10(5)
4 Averages
15(6)
Chapter 2 Maass forms and analytic cohomology: cocompact groups
21(18)
5 From Maass forms to analytic cohomology
21(3)
6 Cohomology for cocompact groups
24(7)
7 From cohomology to Maass forms
31(8)
Chapter 3 Cohomology of infinite cyclic subgroups of PSL2(R)
39(22)
8 Invariants
39(5)
9 Coinvariants
44(17)
Chapter 4 Maass forms and semi-analytic cohomology: groups with cusps
61(34)
10 Maass forms
61(3)
11 Cohomology and parabolic cohomology for groups with cusps
64(9)
12 Maass forms and cohomology
73(6)
13 Parabolic cohomology and mixed parabolic cohomology
79(5)
14 Period functions and periodlike functions for the full modular group
84(7)
15 Maass forms and holomorphic functions
91(4)
Chapter 5 Maass forms and differentiate cohomology
95(20)
16 Differentiable parabolic cohomology
95(17)
17 Smooth parabolic cohomology
112(3)
Chapter 6 Distribution cohomology and Petersson product
115(12)
18 Distribution cohomology
115(2)
19 Duality
117(10)
Bibliography 127(2)
Index 129(2)
List of notations 131
R. Bruggeman, Mathematisch Instituut, Universiteit Utrecht, The Netherlands.

J. Lewis, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.

D. Zagier, MPI for Mathematics, Bonn, Germany, and College de France, Paris, France.