Atnaujinkite slapukų nuostatas

El. knyga: Periodic Monopoles and Difference Modules

  • Formatas: EPUB+DRM
  • Serija: Lecture Notes in Mathematics 2300
  • Išleidimo metai: 23-Feb-2022
  • Leidėjas: Springer Nature Switzerland AG
  • Kalba: eng
  • ISBN-13: 9783030945008
  • Formatas: EPUB+DRM
  • Serija: Lecture Notes in Mathematics 2300
  • Išleidimo metai: 23-Feb-2022
  • Leidėjas: Springer Nature Switzerland AG
  • Kalba: eng
  • ISBN-13: 9783030945008

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

This book studies a class of monopoles defined by certain mild conditions, called periodic monopoles of generalized Cherkis–Kapustin (GCK) type. It presents a classification of the latter in terms of difference modules with parabolic structure, revealing a kind of Kobayashi–Hitchin correspondence between differential geometric objects and algebraic objects. It also clarifies the asymptotic behaviour of these monopoles around infinity.

The theory of periodic monopoles of GCK type has applications to Yang–Mills theory in differential geometry and to the study of difference modules in dynamical algebraic geometry. A complete account of the theory is given, including major generalizations of results due to Charbonneau, Cherkis, Hurtubise, Kapustin, and others, and a new and original generalization of the nonabelian Hodge correspondence first studied by Corlette, Donaldson, Hitchin and Simpson.

This work will be of interest to graduate students and researchers in differential and algebraic geometry, as well as in mathematical physics.
. - Introduction. - Preliminaries. - Formal Difference Modules and Good
Parabolic Structure. - Filtered Bundles. - Basic Examples of Monopoles Around
Infinity. - Asymptotic Behaviour of Periodic Monopoles Around Infinity. - The
Filtered Bundles Associated with Periodic Monopoles. - Global Periodic
Monopoles of Rank One. - Global Periodic Monopoles and Filtered Difference
Modules. - Asymptotic Harmonic Bundles and Asymptotic Doubly Periodic
Instantons (Appendix).
Takuro Mochizuki has been awarded the 2022 Breakthrough Prize in Mathematics for advancing the understanding of holonomic D-modules through his research on harmonic bundles and twister D-modules, which he has studied at the "interface of algebraic geometry and differential geometry".