Atnaujinkite slapukų nuostatas

Perspectives on Big Data Analysis: Methodologies and Applications [Minkštas viršelis]

Edited by
  • Formatas: Paperback / softback, 191 pages, aukštis x plotis: 229x152 mm, weight: 456 g
  • Serija: Contemporary Mathematics
  • Išleidimo metai: 01-Aug-2014
  • Leidėjas: American Mathematical Society
  • ISBN-10: 1470410427
  • ISBN-13: 9781470410421
Kitos knygos pagal šią temą:
  • Formatas: Paperback / softback, 191 pages, aukštis x plotis: 229x152 mm, weight: 456 g
  • Serija: Contemporary Mathematics
  • Išleidimo metai: 01-Aug-2014
  • Leidėjas: American Mathematical Society
  • ISBN-10: 1470410427
  • ISBN-13: 9781470410421
Kitos knygos pagal šią temą:
This volume contains the proceedings of the International Workshop on Perspectives on High-dimensional Data Analysis II, held May 30-June 1, 2012, at the Centre de Recherches Mathématiques, Université de Montréal, Montréal, Quebec, Canada.

This book collates applications and methodological developments in high-dimensional statistics dealing with interesting and challenging problems concerning the analysis of complex, high-dimensional data with a focus on model selection and data reduction. The chapters contained in this book deal with submodel selection and parameter estimation for an array of interesting models. The book also presents some surprising results on high-dimensional data analysis, especially when signals cannot be effectively separated from the noise, it provides a critical assessment of penalty estimation when the model may not be sparse, and it suggests alternative estimation strategies. Readers can apply the suggested methodologies to a host of applications and also can extend these methodologies in a variety of directions. This volume conveys some of the surprises, puzzles and success stories in big data analysis and related fields.

This book is co-published with the Centre de Recherches Mathématiques.
Preface vii
Principal Component Analysis (PCA) for High-Dimensional Data. PCA Is Dead. Long Live PCA
1(10)
Fan Yang
Kjell Doksum
Kam-Wah Tsui
Solving a System of High-Dimensional Equations by MCMC
11(10)
Nozer D. Singpurwalla
Joshua Landon
A Slice Sampler for the Hierarchical Poisson/Gamma Random Field Model
21(16)
Jian Kang
Timothy D. Johnson
A New Penalized Quasi-Likelihood Approach for Estimating the Number of States in a Hidden Markov Model
37(24)
Annaliza McGillivray
Abbas Khalili
Efficient Adaptive Estimation Strategies in High-Dimensional Partially Linear Regression Models
61(20)
Xiaoli Gao
S. Ejaz Ahmed
Geometry and Properties of Generalized Ridge Regression in High Dimensions
81(14)
Hemant Ishwaran
J. Sunil Rao
Multiple Testing for High-Dimensional Data
95(14)
Guoqing Diao
Bret Hanlon
Anand N. Vidyashankar
On Multiple Contrast Tests and Simultaneous Confidence Intervals in High-Dimensional Repeated Measures Designs
109(16)
Frank Konietschke
Yulia R. Gel
Edgar Brunner
Data-Driven Smoothing Can Preserve Good Asymptotic Properties
125(16)
Zhouwang Yang
Huizhi Xie
Xiaoming Huo
Variable Selection for Ultra-High-Dimensional Logistic Models
141(18)
Pang Du
Pan Wu
Hua Liang
Shrinkage Estimation and Selection for a Logistic Regression Model
159(18)
Shakhawat Hossain
S. Ejaz Ahmed
Manifold Unfolding by Isometric Patch Alignment with an Application in Protein Structure Determination
177
Pooyan Khajehpour Tadavani
Babak Alipanahi
Ali Ghodsi
S. Ejaz Ahmed, Brock University, St. Catharines, Ontario, Canada.