1 Introduction |
|
1 | (6) |
|
1.1 Introductory Concepts |
|
|
3 | (3) |
|
1.1.1 Stochastic Reservoir Modeling |
|
|
3 | (1) |
|
1.1.2 Flow Modeling in Highly Heterogeneous Reservoirs |
|
|
4 | (1) |
|
1.1.3 Linking Geostatistical Modeling to Flow Modeling |
|
|
5 | (1) |
|
|
6 | (1) |
2 Spatial Correlation |
|
7 | (50) |
|
|
8 | (1) |
|
|
9 | (12) |
|
2.2.1 Variogram Inference |
|
|
11 | (1) |
|
2.2.2 Variogram Characteristics |
|
|
12 | (2) |
|
|
14 | (1) |
|
2.2.4 Behavior Next to the Origin |
|
|
15 | (3) |
|
2.2.5 Outliers and Semi-Variogram Inference |
|
|
18 | (2) |
|
|
20 | (1) |
|
|
21 | (34) |
|
2.3.1 Positive Definiteness |
|
|
22 | (2) |
|
2.3.2 Allowable Linear Combinations |
|
|
24 | (1) |
|
2.3.3 Legitimate Structural Models |
|
|
25 | (8) |
|
2.3.4 Positive Combinations |
|
|
33 | (3) |
|
2.3.5 Geometric Anisotropy |
|
|
36 | (2) |
|
2.3.6 Coordinate Transform in 2D |
|
|
38 | (7) |
|
2.3.7 Modeling Anisotropy in 3D |
|
|
45 | (2) |
|
2.3.8 Semi-Variogram Computation in 3D |
|
|
47 | (4) |
|
|
51 | (1) |
|
|
52 | (1) |
|
|
53 | (2) |
|
|
55 | (2) |
3 Spatial Estimation |
|
57 | (82) |
|
3.1 Linear Least Squares Estimation or Interpolation |
|
|
57 | (1) |
|
|
57 | (6) |
|
3.2.1 Linear Least Squares-An Interpretation |
|
|
58 | (2) |
|
3.2.2 Application to Spatial Estimation |
|
|
60 | (3) |
|
3.3 Estimation in General |
|
|
63 | (5) |
|
3.3.1 Loss Function-Some Analytical Results |
|
|
65 | (3) |
|
|
68 | (14) |
|
3.4.1 Expected Value of the Error Distribution |
|
|
70 | (1) |
|
|
71 | (4) |
|
|
75 | (7) |
|
|
82 | (17) |
|
3.5.1 Kriging with a Trend Function |
|
|
83 | (5) |
|
|
88 | (6) |
|
3.5.3 Universal Kriging Estimate for Trend |
|
|
94 | (5) |
|
3.6 Kriging with an External Drift |
|
|
99 | (4) |
|
|
103 | (13) |
|
3.7.1 Non-Parametric Approach to Modeling Distributions |
|
|
103 | (1) |
|
3.7.2 Kriging in Terms of Projections |
|
|
104 | (3) |
|
3.7.3 Indicator Basis Function |
|
|
107 | (2) |
|
|
109 | (7) |
|
3.8 Data Integration in Kriging |
|
|
116 | (21) |
|
3.8.1 Simple Co-Kriging Estimator |
|
|
118 | (2) |
|
3.8.2 Simplified Models for Data Integration |
|
|
120 | (5) |
|
3.8.3 Linear Model of Coregionalization |
|
|
125 | (12) |
|
|
137 | (2) |
4 Spatial Simulation |
|
139 | (56) |
|
|
139 | (1) |
|
|
140 | (2) |
|
4.3 Stochastic Simulation |
|
|
142 | (16) |
|
4.3.1 Lower-Upper (LU) Simulation |
|
|
144 | (8) |
|
4.3.2 Sequential Simulation |
|
|
152 | (6) |
|
4.4 Non-Parametric Sequential Simulation |
|
|
158 | (22) |
|
4.4.1 Interpolating within the Range of Thresholds Specified |
|
|
160 | (1) |
|
|
161 | (4) |
|
4.4.3 Data Integration within the Indicator Framework |
|
|
165 | (10) |
|
4.4.4 Markov-Bayes Approach |
|
|
175 | (5) |
|
4.5 Data Integration Using the Permanence of Ratio Hypothesis |
|
|
180 | (13) |
|
|
185 | (6) |
|
|
191 | (2) |
|
|
193 | (2) |
5 Geostatistical Simulation Constrained to Higher-Order Statistics |
|
195 | (44) |
|
5.1 Indicator Basis Function |
|
|
196 | (40) |
|
5.1.1 Establishing the Basis Function-Projection Theorem |
|
|
198 | (4) |
|
5.1.2 Single Extended Normal Equation |
|
|
202 | (1) |
|
5.1.3 Single Normal Equation Simulation |
|
|
203 | (21) |
|
5.1.4 Returning to the Full Indicator Basis Function |
|
|
224 | (12) |
|
|
236 | (3) |
6 Numerical Schemes for Flow Simulation |
|
239 | (46) |
|
|
239 | (2) |
|
6.1.1 Conservation of Mass |
|
|
239 | (1) |
|
6.1.2 Conservation of Momentum |
|
|
240 | (1) |
|
|
241 | (18) |
|
6.2.1 Simulation Equations |
|
|
241 | (2) |
|
6.2.2 External Boundary Conditions |
|
|
243 | (1) |
|
|
244 | (1) |
|
|
244 | (3) |
|
|
247 | (5) |
|
|
252 | (7) |
|
|
259 | (11) |
|
6.3.1 Simulation Equations |
|
|
259 | (2) |
|
6.3.2 External Boundary Conditions |
|
|
261 | (1) |
|
|
261 | (1) |
|
|
262 | (1) |
|
6.3.5 Linearization and Solution Methods |
|
|
263 | (7) |
|
6.4 Finite Element Formulation |
|
|
270 | (5) |
|
6.5 Solution of Linear System of Equations |
|
|
275 | (6) |
|
|
281 | (4) |
7 Gridding Schemes for Flow Simulation |
|
285 | (48) |
|
|
285 | (6) |
|
|
285 | (1) |
|
|
286 | (1) |
|
|
286 | (1) |
|
7.1.4 Perpendicular Bisector Grid |
|
|
287 | (2) |
|
7.1.5 General Unstructured Grid |
|
|
289 | (1) |
|
7.1.6 Other Specialized Gridding Options |
|
|
290 | (1) |
|
7.2 Consistency, Stability, and Convergence |
|
|
291 | (14) |
|
|
291 | (7) |
|
|
298 | (7) |
|
|
305 | (1) |
|
7.3 Advanced Numerical Schemes for Unstructured Grids |
|
|
305 | (13) |
|
7.3.1 Generalized CVFD-TPFA Formulation |
|
|
305 | (1) |
|
7.3.2 CVFD-MPFA Formulation |
|
|
306 | (5) |
|
7.3.3 Control Volume Finite Element Formulation |
|
|
311 | (3) |
|
7.3.4 Mixed Finite Element Formulation |
|
|
314 | (4) |
|
|
318 | (11) |
|
7.4.1 Dual-Permeability Formulation |
|
|
318 | (3) |
|
7.4.2 Dual-Porosity Formulation |
|
|
321 | (1) |
|
7.4.3 Embedded Discrete Fracture Model |
|
|
322 | (7) |
|
|
329 | (4) |
8 Upscaling of Reservoir Models |
|
333 | (48) |
|
8.1 Statistical Upscaling |
|
|
333 | (6) |
|
|
333 | (1) |
|
8.1.2 Statistical Re-Normalization |
|
|
334 | (2) |
|
|
336 | (3) |
|
|
339 | (13) |
|
8.2.1 Effective Medium Approximations |
|
|
339 | (1) |
|
|
339 | (8) |
|
8.2.3 Two-Phase Flow (Relative Permeability) |
|
|
347 | (4) |
|
8.2.4 Compositional Flow Simulation |
|
|
351 | (1) |
|
|
352 | (8) |
|
|
353 | (4) |
|
8.3.2 Scale-Up of Linearly Averaged Attributes |
|
|
357 | (1) |
|
8.3.3 Scale-Up of Non-Linearly Averaged Attributes |
|
|
358 | (2) |
|
8.4 Scale-Up of Flow and Transport Equations |
|
|
360 | (16) |
|
8.4.1 Dimensionless Scaling Groups |
|
|
360 | (1) |
|
8.4.2 Stochastic Perturbation Methods |
|
|
361 | (6) |
|
8.4.3 Volume Averaging Methods |
|
|
367 | (9) |
|
|
376 | (1) |
|
|
376 | (5) |
9 History Matching-Dynamic Data Integration |
|
381 | (48) |
|
9.1 History Matching as an Inverse Problem |
|
|
382 | (2) |
|
|
384 | (11) |
|
9.2.1 Gradient-Based Methods |
|
|
384 | (2) |
|
|
386 | (9) |
|
9.3 Probabilistic Schemes |
|
|
395 | (13) |
|
9.3.1 Optimization-Based Bayesian Methods |
|
|
395 | (5) |
|
9.3.2 Sampling Algorithms |
|
|
400 | (8) |
|
9.4 Ensemble-Based Schemes |
|
|
408 | (14) |
|
9.4.1 Ensemble Kalman Filters |
|
|
408 | (7) |
|
9.4.2 Ensemble Pattern Search and Model Selection |
|
|
415 | (7) |
|
|
422 | (7) |
A Quantile Variograms |
|
429 | (6) |
B Some Details about the Markov-Bayes Model |
|
435 | (6) |
Index |
|
441 | |