Preface |
|
xi | |
Authors |
|
xiii | |
Chapter 1 Petroleum Reservoir Fluids |
|
1 | (12) |
|
1.1 Reservoir Fluid Constituents |
|
|
1 | (1) |
|
1.2 Properties of Reservoir Fluid Constituents |
|
|
1 | (5) |
|
|
6 | (1) |
|
1.4 Classification of Petroleum Reservoir Fluids |
|
|
7 | (4) |
|
|
11 | (2) |
Chapter 2 Sampling, Quality Control, and Compositional Analyses |
|
13 | (34) |
|
|
13 | (3) |
|
2.2 Quality Control of Fluid Samples |
|
|
16 | (5) |
|
2.2.1 Bottom Hole/Wellhead Samples |
|
|
16 | (1) |
|
|
17 | (4) |
|
2.2.2.1 Quality Control of Separator Gas |
|
|
18 | (1) |
|
2.2.2.2 QC of Separator Liquid |
|
|
19 | (2) |
|
2.3 Compositional Analyses |
|
|
21 | (13) |
|
|
21 | (9) |
|
2.3.1.1 Preparation Oil Mixtures |
|
|
21 | (2) |
|
2.3.1.2 Preparation Gas Condensate Mixtures |
|
|
23 | (1) |
|
2.3.1.3 Gas Chromatograph |
|
|
23 | (7) |
|
|
30 | (19) |
|
2.3.2.1 Molecular Weight from Freezing Point Depression |
|
|
33 | (1) |
|
2.4 Reservoir Fluid Composition from Bottom Hole Sample |
|
|
34 | (2) |
|
2.5 Reservoir Fluid Composition from Separator Samples |
|
|
36 | (6) |
|
2.6 Mud-Contaminated Samples |
|
|
42 | (4) |
|
|
46 | (1) |
Chapter 3 PVT Experiments |
|
47 | (36) |
|
3.1 Routine PVT Experiments |
|
|
49 | (18) |
|
3.1.1 Constant-Mass Expansion Experiment |
|
|
49 | (7) |
|
|
49 | (2) |
|
3.1.1.2 Gas Condensate Mixtures |
|
|
51 | (2) |
|
|
53 | (3) |
|
3.1.2 Differential Liberation Experiment |
|
|
56 | (4) |
|
3.1.3 Constant-Volume Depletion Experiment |
|
|
60 | (3) |
|
|
63 | (3) |
|
3.1.5 Viscosity Experiment |
|
|
66 | (1) |
|
|
67 | (14) |
|
3.2.1 Solubility Swelling Test |
|
|
67 | (5) |
|
3.2.2 Equilibrium Contact Experiment |
|
|
72 | (1) |
|
3.2.3 Multi-Contact Experiment |
|
|
72 | (2) |
|
3.2.4 Slim Tube Experiment |
|
|
74 | (6) |
|
3.2.5 Gas Revaporization Experiment |
|
|
80 | (1) |
|
|
81 | (2) |
Chapter 4 Equations of State |
|
83 | (22) |
|
4.1 van der Waals Equation |
|
|
83 | (3) |
|
4.2 RedlichKwong Equation |
|
|
86 | (1) |
|
4.3 SoaveRedlichKwong Equation |
|
|
87 | (4) |
|
4.4 PengRobinson Equation |
|
|
91 | (1) |
|
4.5 Peneloux Volume Correction |
|
|
92 | (3) |
|
4.6 Other Cubic Equations of State |
|
|
95 | (1) |
|
4.7 Equilibrium Calculations |
|
|
96 | (1) |
|
4.8 Nonclassical Mixing Rules |
|
|
97 | (1) |
|
|
97 | (5) |
|
4.10 Other Equations of State |
|
|
102 | (1) |
|
|
103 | (2) |
Chapter 5 C7+ Characterization |
|
105 | (34) |
|
5.1 Classes of Components |
|
|
105 | (12) |
|
5.1.1 Defined Components to C6 |
|
|
105 | (2) |
|
|
107 | (3) |
|
|
110 | (7) |
|
5.2 Binary Interaction Coefficients |
|
|
117 | (1) |
|
|
117 | (4) |
|
|
121 | (1) |
|
5.5 Mixing of Multiple Fluids |
|
|
122 | (3) |
|
5.6 Characterizing of Multiple Compositions to the Same Pseudocomponents |
|
|
125 | (2) |
|
5.7 Heavy Oil Compositions |
|
|
127 | (7) |
|
5.7.1 Heavy Oil Reservoir Fluid Compositions |
|
|
128 | (1) |
|
5.7.2 Characterization of Heavy Oil Mixture |
|
|
128 | (6) |
|
5.8 PC-SAFT Characterization Procedure |
|
|
134 | (3) |
|
|
137 | (2) |
Chapter 6 Flash and Phase Envelope Calculations |
|
139 | (26) |
|
6.1 Pure Component Vapor Pressures from Cubic Equations of State |
|
|
140 | (2) |
|
6.2 Mixture Saturation Points from Cubic Equations of State |
|
|
142 | (2) |
|
|
144 | (14) |
|
|
144 | (5) |
|
6.3.2 Solving the Flash Equations |
|
|
149 | (1) |
|
6.3.3 Multiphase PT-Flash |
|
|
150 | (5) |
|
6.3.4 Three Phase PT-Flash with a Pure Water Phase |
|
|
155 | (2) |
|
6.3.5 Other Flash Specifications |
|
|
157 | (1) |
|
6.4 Phase Envelope Calculations |
|
|
158 | (4) |
|
|
162 | (1) |
|
|
163 | (2) |
Chapter 7 PVT Simulation |
|
165 | (22) |
|
7.1 Constant Mass Expansion |
|
|
165 | (4) |
|
7.2 Constant Volume Depletion |
|
|
169 | (3) |
|
7.3 Differential Liberation |
|
|
172 | (2) |
|
|
174 | (2) |
|
7.5 Solubility Swelling Test |
|
|
176 | (5) |
|
7.6 PVT Simulations with PC-SAFT EoS |
|
|
181 | (3) |
|
7.7 What to Expect from a PVT Simulation |
|
|
184 | (2) |
|
|
186 | (1) |
Chapter 8 Physical Properties |
|
187 | (10) |
|
|
187 | (1) |
|
|
188 | (1) |
|
|
189 | (1) |
|
|
189 | (1) |
|
|
190 | (1) |
|
8.6 JouleThomson Coefficient |
|
|
190 | (1) |
|
|
190 | (1) |
|
|
190 | (5) |
|
|
195 | (2) |
Chapter 9 Regression to Experimental PVT Data |
|
197 | (36) |
|
9.1 Shortcomings of Parameter Regression |
|
|
197 | (1) |
|
9.2 Volume Translation Parameter |
|
|
198 | (1) |
|
9.3 Tc, Pc, and Acentric Factor of C7+ Fractions |
|
|
198 | (1) |
|
9.4 Regressing on Coefficients in Property Correlations |
|
|
199 | (1) |
|
9.5 Object Functions and Weight Factors |
|
|
199 | (1) |
|
9.6 Example of Regression for Gas Condensate |
|
|
200 | (6) |
|
9.7 Tuning on Single Pseudocomponent Properties |
|
|
206 | (2) |
|
|
208 | (4) |
|
9.9 Fluids Characterized to the Same Pseudocomponents |
|
|
212 | (4) |
|
9.10 PVT Data with Gas Injection |
|
|
216 | (5) |
|
9.11 Original Reservoir Fluid Composition from Depleted Sample |
|
|
221 | (10) |
|
|
227 | (2) |
|
9.11.2 Depleted Oil and Shale Reservoir Fluid Samples |
|
|
229 | (2) |
|
|
231 | (2) |
Chapter 10 Transport Properties |
|
233 | (36) |
|
|
233 | (19) |
|
10.1.1 Corresponding States Viscosity Models |
|
|
233 | (9) |
|
10.1.2 Adaptation of Corresponding States Viscosity Model to Heavy Oils |
|
|
242 | (1) |
|
10.1.3 LohrenzBrayClark Method |
|
|
243 | (2) |
|
10.1.4 Other Viscosity Models |
|
|
245 | (2) |
|
10.1.5 Viscosity Data and Simulation Results |
|
|
247 | (5) |
|
10.2 Thermal Conductivity |
|
|
252 | (8) |
|
10.2.1 Data and Simulation Results for Thermal Conductivity |
|
|
260 | (1) |
|
10.3 Gas/Oil Surface Tension |
|
|
260 | (5) |
|
10.3.1 Models for Interfacial Tension |
|
|
262 | (3) |
|
10.3.2 Data and Simulation Results for Interfacial Tensions |
|
|
265 | (1) |
|
10.4 Diffusion Coefficients |
|
|
265 | (2) |
|
|
267 | (2) |
Chapter 11 Wax Formation |
|
269 | (30) |
|
11.1 Experimental Studies of Wax Precipitation |
|
|
269 | (8) |
|
11.2 Thermodynamic Description of Melting of a Pure Component |
|
|
277 | (5) |
|
11.3 Modeling of Wax Precipitation |
|
|
282 | (9) |
|
11.3.1 Activity Coefficient Approach |
|
|
283 | (3) |
|
11.3.2 Ideal Solid Solution Wax Models |
|
|
286 | (5) |
|
11.4 Wax PT Flash Calculations |
|
|
291 | (1) |
|
11.5 Viscosity of OilWax Suspensions |
|
|
291 | (3) |
|
|
294 | (2) |
|
|
296 | (3) |
Chapter 12 Asphaltenes |
|
299 | (24) |
|
12.1 Experimental Techniques for Studying Asphaltene Precipitation |
|
|
303 | (3) |
|
12.1.1 Quantification of Amount of Asphaltenes |
|
|
303 | (1) |
|
12.1.2 Detection of Asphaltene Onset Points |
|
|
303 | (1) |
|
12.1.2.1 Gray i metric Technique |
|
|
303 | (1) |
|
12.1.2.2 Acoustic Resonance Technique |
|
|
303 | (1) |
|
12.1.2.3 Light-Scattering Technique |
|
|
304 | (1) |
|
12.1.2.4 Filtration and Other Experimental Techniques |
|
|
304 | (1) |
|
12.1.3 Experimental Data for Asphaltene Onset Pressures |
|
|
304 | (2) |
|
|
306 | (11) |
|
12.2.1 Models Based on Cubic Equation of State |
|
|
307 | (5) |
|
12.2.2 Polymer Solution Models |
|
|
312 | (1) |
|
12.2.3 ThermodynamicColloidal Model |
|
|
313 | (1) |
|
|
314 | (1) |
|
12.2.5 Other Asphaltene Models |
|
|
315 | (2) |
|
12.3 Asphaltene Tar Mat Calculation |
|
|
317 | (2) |
|
|
319 | (4) |
Chapter 13 Gas Hydrates |
|
323 | (24) |
|
|
323 | (4) |
|
13.2 Modeling of Hydrate Formation |
|
|
327 | (5) |
|
|
332 | (1) |
|
13.4 Hydrate Simulation Results |
|
|
333 | (7) |
|
13.5 Hydrate P/T Flash Calculations |
|
|
340 | (4) |
|
13.5.1 Hydrate Fugacities |
|
|
340 | (2) |
|
13.5.2 Flash Simulation Technique |
|
|
342 | (2) |
|
|
344 | (3) |
Chapter 14 Compositional Variations with Depth |
|
347 | (26) |
|
14.1 Theory of Isothermal Reservoir |
|
|
347 | (10) |
|
14.1.1 Depth Gradient Calculations for Isothermal Reservoirs |
|
|
349 | (8) |
|
14.2 Theory of Non-isothermal Reservoir |
|
|
357 | (13) |
|
14.2.1 Absolute Enthalpies |
|
|
364 | (1) |
|
14.2.2 Examples: Calculations on Reservoir Fluids |
|
|
364 | (6) |
|
|
370 | (3) |
Chapter 15 Minimum Miscibility Pressure |
|
373 | (22) |
|
15.1 Three-Component Mixtures |
|
|
373 | (6) |
|
15.2 MMP of Multicomponent Mixtures |
|
|
379 | (13) |
|
|
379 | (1) |
|
|
379 | (7) |
|
15.2.3 Immiscible Systems |
|
|
386 | (3) |
|
15.2.4 Cell-to-Cell Simulation |
|
|
389 | (3) |
|
|
392 | (3) |
Chapter 16 Formation Water and Hydrate Inhibitors |
|
395 | (28) |
|
16.1 HydrocarbonWater Phase Equilibrium Models |
|
|
395 | (15) |
|
16.1.1 Approach of Kabadi and Danner |
|
|
398 | (3) |
|
16.1.2 Asymmetric Mixing Rules |
|
|
401 | (1) |
|
16.1.3 Huron and Vidal Mixing Rule |
|
|
402 | (5) |
|
16.1.4 Phase Equilibria for HydrocarbonSalt Water |
|
|
407 | (3) |
|
16.1.5 Association Models |
|
|
410 | (1) |
|
16.2 Experimental HydrocarbonWater Phase Equilibrium Data |
|
|
410 | (5) |
|
|
415 | (3) |
|
16.3.1 Viscosity of WaterInhibitor Mixtures |
|
|
417 | (1) |
|
16.3.2 Properties of Salt Water |
|
|
417 | (1) |
|
16.3.3 OilWater Emulsion Viscosities |
|
|
418 | (1) |
|
16.4 Phase Envelopes of HydrocarbonAqueous Mixtures |
|
|
418 | (2) |
|
|
420 | (3) |
Chapter 17 Scale Precipitation |
|
423 | (18) |
|
17.1 Criteria for Salt Precipitation |
|
|
423 | (2) |
|
17.2 Equilibrium Constants |
|
|
425 | (3) |
|
17.3 Activity Coefficients |
|
|
428 | (8) |
|
|
436 | (1) |
|
17.5 Example Calculations |
|
|
437 | (2) |
|
|
439 | (2) |
Appendix A Fundamentals on Phase Equilibrium |
|
441 | (6) |
|
A.1 First and Second Laws of Thermodynamics |
|
|
441 | (1) |
|
A.2 Fundamental Thermodynamic Relations |
|
|
441 | (1) |
|
|
442 | (1) |
|
A.4 Fugacities and Fugacity Coefficients |
|
|
443 | (4) |
Index |
|
447 | |