Atnaujinkite slapukų nuostatas

El. knyga: Two-phase Emission Detectors

, (National Research Nuclear Univ Mephi (Moscow Engineering Physics Inst), Russia), (Budker Inst Of Nuclear Physics, Russia & Novosibirsk State Univ, Russia-), (National Research Nuclear Univ Mephi (Moscow Engineering Physics Inst), Russia)
  • Formatas: 352 pages
  • Išleidimo metai: 15-Jul-2021
  • Leidėjas: World Scientific Publishing Co Pte Ltd
  • Kalba: eng
  • ISBN-13: 9789811231100
Kitos knygos pagal šią temą:
  • Formatas: 352 pages
  • Išleidimo metai: 15-Jul-2021
  • Leidėjas: World Scientific Publishing Co Pte Ltd
  • Kalba: eng
  • ISBN-13: 9789811231100
Kitos knygos pagal šią temą:

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

One of the rapidly developing areas of modern experimental nuclear physics is non-accelerator experiments using low-background detectors. Such experiments, as a rule, are aimed at solving problems that are of fundamental importance for understanding the structure of the Universe, checking the Standard Model of elementary particles, and looking for new physics behind the observable world. The most interesting tasks include the search for dark matter in the form of new weakly interacting particles, the search for neutrinoless double beta decay, the determination of the magnetic moment of the neutrino, the study of neutrino oscillation and new types of interaction of elementary particles, such as coherent neutrino scattering off heavy nuclei.All these processes, occurring with extremely low cross sections, require the development of efficient large-mass detectors capable of detecting small energy releases down to individual ionization electrons. An effective method to do this is the emission method of detecting ionizing particles in two-phase media, which has been proposed at Moscow Engineering Physics Institute (MEPhI) 50 years ago. The origin of this technique can be traced to the research headed by Prof. Boris A Dolgoshein, whose study focus on the properties of condensed noble gases as a means to develop a tracking streamer chamber with a high-density working medium.This monograph, devoted exclusively to two-phase emission detectors, considers the technology's basic features while taking into account new developments introduced into experimental practice in the last ten years since the publication of its predecessor, Emission Detectors (Bolozdynya, 2010).
Preface vii
Introduction xv
1 Historical Review of Development of Two-Phase Emission Detectors 1(14)
1.1 Introduction
1(1)
1.2 The Birth of the Idea of Two-phase Emission Detectors
2(2)
1.3 Emission Spark Chamber
4(1)
1.4 Emission Streamer Chamber
5(1)
1.5 Ionization Emission Detectors
6(1)
1.6 Gas Gain Emission Detectors
7(5)
1.7 Electroluminescence Emission Chambers
12(3)
2 Particle Interactions and Energy Transfer Mechanisms in Noble Liquids 15(70)
2.1 Structure of Noble Liquids
15(10)
2.2 Particle Energy Transfer in the Liquids
25(12)
2.2.1 Interaction of electrons and nuclear recoils with matter
25(7)
2.2.2 Energy dissipation in noble gas liquids
32(5)
2.3 Primary Scintillation in the Liquids
37(21)
2.3.1 Scintillation mechanism
37(10)
2.3.2 Light yield for different particles
47(11)
2.4 Charge Yield in the Liquids
58(27)
2.4.1 Electron thermalization
58(3)
2.4.2 Charge yield and recombination models (electrons)
61(13)
2.4.3 Charge yield and recombination (nuclear recoils)
74(11)
3 Electron Drift in and Emission from Noble Liquids 85(42)
3.1 Electron Drift and Diffusion
85(13)
3.2 Drift of Positive and Negative Ions
98(5)
3.3 Electron Attachment
103(11)
3.4 Electron Emission
114(13)
4 Light and Charge Amplification in Two-Phase Emission Detectors 127(46)
4.1 Basic Concepts of Signal Amplification in Two-phase Detectors
127(2)
4.2 Light Signal Amplification in the Gas Phase of Two-Phase Detector, Using Proportional Electroluminescence
129(14)
4.2.1 Three EL mechanisms
129(4)
4.2.2 Electroluminescence due to excimer emission
133(4)
4.2.3 Electroluminescence due to neutral bremsstrahlung effect
137(4)
4.2.4 Electroluminescence due to atomic transitions in the NIR
141(2)
4.2.5 Concepts of light signal amplification
143(1)
4.3 Charge Signal Amplification in the Gas Phase of Two-Phase Detector, Using Electron Avalanching
143(15)
4.3.1 Charge signal amplification concepts at cryogenic temperatures
143(4)
4.3.2 GEM operation in pure noble gases at cryogenic temperatures
147(2)
4.3.3 Two-phase detectors with GEM multipliers
149(3)
4.3.4 Two-phase detectors with THGEM multipliers
152(4)
4.3.5 Gain limit, gain stability and discharge-resistance problems in two-phase detectors with GEM and THGEM multipliers
156(1)
4.3.6 THGEM as interface grid in two-phase detectors
157(1)
4.4 Combined Charge/Light Signal Amplification in the Gas Phase of Two-Phase Detector, Using Avalanche Scintillations
158(5)
4.4.1 Two-phase Ar detector with combined THGEM/SiPM-matrix multiplier
158(3)
4.4.2 Two-phase Ar detector with combined THGEM/CCD-camera multiplier
161(2)
4.5 Charge and Light Signal Amplification in the Liquid Phase
163(10)
4.5.1 Charge and light signal amplification in liquid Xe and liquid Ar using wires, strips and needles
163(3)
4.5.2 Light signal amplification in liquid Ar using THGEMs and GEMs
166(2)
4.5.3 Liquid-hole multipliers in liquid Ar and liquid Xe
168(2)
4.5.4 Breakdowns in noble-gas liquids
170(3)
5 Two-Phase Detectors for Dark Matter Search 173(54)
5.1 Introduction
173(4)
5.2 Xenon Detectors
177(42)
5.2.1 ZEPLIN program
178(9)
5.2.2 XENON program
187(15)
5.2.3 LUX experiment
202(7)
5.2.4 LUX-ZEPLIN (LZ) experiment
209(3)
5.2.5 PandaX program
212(5)
5.2.6 DARWIN project
217(2)
5.3 Argon Detectors
219(8)
5.3.1 WArP and ArDM programs
220(1)
5.3.2 DarkSide program
221(6)
6 Neutrino Detection with Two-Phase Emission Detectors 227(14)
6.1 Introduction
227(1)
6.2 Two-phase Emission Detectors for CEvNS
227(10)
6.2.1 Liquid argon emission detector
229(1)
6.2.2 Liquid xenon emission detectors
229(8)
6.3 DUNE Project
237(4)
7 Imaging Two-Phase Emission Detectors 241(10)
7.1 Introduction
241(1)
7.2 Spark Emission Chamber
241(3)
7.3 Emission Streamer Chamber
244(2)
7.4 Electroluminescence Emission Chamber
246(5)
8 Recent Developments in Two-Phase Emission Detector Techniques 251(40)
8.1 Introduction
251(1)
8.2 Cryogenic PMTS
251(7)
8.3 Cryogenic SiPMs
258(7)
8.4 Light Collection: Reflectors and Wavelength Shifters
265(3)
8.5 Purification of Working Media
268(12)
8.5.1 Hardware selection
269(1)
8.5.2 Preparation of raw materials to be used as working media
270(1)
8.5.3 Purging detector before liquid filling
271(2)
8.5.4 Purifying circulation in the course of the detector operation
273(2)
8.5.5 Purifying from radioactive impurities
275(1)
8.5.6 Purity monitoring
276(4)
8.6 Cryogenics for Two-phase Xenon Emission Detectors
280(11)
8.6.1 Cooling bath system
281(1)
8.6.2 LN2 purging system
282(1)
8.6.3 LN2 cooling with a "cold finger"
282(2)
8.6.4 Pulse tube refrigerators
284(1)
8.6.5 Two-phase closed tubular thermosyphon
285(6)
Conclusion 291(2)
Bibliography 293(34)
Index 327