Atnaujinkite slapukų nuostatas

Phase Transformations in Metals and Alloys (Revised Reprint) 3rd edition [Minkštas viršelis]

4.19/5 (99 ratings by Goodreads)
, (University of Exeter, UK)
  • Formatas: Paperback / softback, 520 pages, aukštis x plotis: 234x156 mm
  • Išleidimo metai: 10-Feb-2009
  • Leidėjas: CRC Press Inc
  • ISBN-10: 1420062107
  • ISBN-13: 9781420062106
Kitos knygos pagal šią temą:
  • Formatas: Paperback / softback, 520 pages, aukštis x plotis: 234x156 mm
  • Išleidimo metai: 10-Feb-2009
  • Leidėjas: CRC Press Inc
  • ISBN-10: 1420062107
  • ISBN-13: 9781420062106
Kitos knygos pagal šią temą:
Expanded and revised to cover developments in the field over the past 17 years, and now reprinted to correct errors in the prior printing, Phase Transformation in Metals and Alloys, Third Edition provides information and examples that better illustrate the engineering relevance of this topic. It supplies a comprehensive overview of specific types of phase transformations, supplemented by practical case studies of engineering alloys.

New in the Third Edition:











Computer-aided calculation of phase diagrams Recent developments in metallic glasses The Scheil method of calculating a CCT diagram from a TTT diagram Expanded treatment of the nucleation and growth of polygonal ferrite and bainite New case studies covering copper precipitation hardening of very low carbon bainitic steel and very fine carbide-free bainite Detailed treatment of strain-induced martensite provides a theoretical background to transformation-induced plasticity (TRIP) steels

Unique Presentation Links Theory to ApplicationAdding new case studies, detailed examples, and exercises drawn from current applications, the third edition keeps the previous editions popular easy-to -follow style and excellent mix of basic and advanced information, making it ideal for those new to the field. The books unique presentation links basic understanding of theory with application in a gradually progressive yet exciting manner. Based on the authors teaching notes, the book takes a pedagogical approach and provides examples for applications and problems that can be readily used for exercises.

PowerPoint© illustrations available with qualifying course adoptions
Preface to the Third Edition xiii
Preface to the Second Edition xv
Preface to the First Edition xvii
Authors xix
Chapter 1 Thermodynamics and Phase Diagrams 1
1.1 Equilibrium
1
1.2 Single-Component Systems
4
1.2.1 Gibbs Free Energy as a Function of Temperature
4
1.2.2 Pressure Effects
7
1.2.3 Driving Force for Solidification
9
1.3 Binary Solutions
11
1.3.1 Gibbs Free Energy of Binary Solutions
11
1.3.2 Ideal Solutions
13
1.3.3 Chemical Potential
15
1.3.4 Regular Solutions
17
1.3.5 Activity
21
1.3.6 Real Solutions
23
1.3.7 Ordered Phases
24
1.3.8 Intermediate Phases
26
1.4 Equilibrium in Heterogeneous Systems
28
1.5 Binary Phase Diagrams
31
1.5.1 Simple Phase Diagram
31
1.5.2 Systems with a Miscibility Gap
32
1.5.3 Ordered Alloys
33
1.5.4 Simple Eutectic Systems
34
1.5.5 Phase Diagrams Containing Intermediate Phases
34
1.5.6 Gibbs Phase Rule
34
1.5.7 Effect of Temperature on Solid Solubility
39
1.5.8 Equilibrium Vacancy Concentration
40
1.6 Influence of Interfaces on Equilibrium
42
1.7 Ternary Equilibrium
45
1.8 Additional Thermodynamic Relationships for Binary Solutions
50
1.9 Computation of Phase Diagrams
52
1.9.1 Pure Stoichiometric Substances
52
1.9.2 Solution Phases
56
1.9.2.1 Substitutional Solutions
56
1.10 Kinetics of Phase Transformations
57
Exercises
58
References
60
Further Reading
61
Chapter 2 Diffusion 63
2.1 Atomic Mechanisms of Diffusion
65
2.2 Interstitial Diffusion
67
2.2.1 Interstitial Diffusion as a Random Jump Process
67
2.2.2 Effect of Temperature—Thermal Activation
69
2.2.3 Steady-State Diffusion
72
2.2.4 Nonsteady-State Diffusion
72
2.2.5 Solutions to the Diffusion Equation
74
2.2.5.1 Homogenization
74
2.2.5.2 Carburization of Steel
76
2.3 Substitutional Diffusion
78
2.3.1 Self-Diffusion
78
2.3.2 Vacancy Diffusion
83
2.3.3 Diffusion in Substitutional Alloys
84
2.3.4 Diffusion in Dilute Substitutional Alloys
92
2.4 Atomic Mobility
93
2.5 Tracer Diffusion in Binary Alloys
95
2.6 Diffusion in Ternary Alloys
98
2.7 High-Diffusivity Paths
100
2.7.1 Diffusion along Grain Boundaries and Free Surfaces
100
2.7.2 Diffusion along Dislocations
103
2.8 Diffusion in Multiphase Binary Systems
104
Exercises
106
References
109
Further Reading
110
Chapter 3 Crystal Interfaces and Microstructure 111
3.1 Interfacial Free Energy
112
3.2 Solid/Vapor Interfaces
113
3.3 Boundaries in Single-Phase Solids
117
3.3.1 Low-Angle and High-Angle Boundaries
118
3.3.2 Special High-Angle Grain Boundaries
121
3.3.3 Equilibrium in Polycrystalline Materials
124
3.3.4 Thermally Activated Migration of Grain Boundaries
129
3.3.5 Kinetics of Grain Growth
137
3.4 Interphase Interfaces in Solids
140
3.4.1 Interface Coherence
141
3.4.1.1 Fully Coherent Interfaces
141
3.4.1.2 Semicoherent Interfaces
143
3.4.1.3 Incoherent Interfaces
144
3.4.1.4 Complex Semicoherent Interfaces
145
3.4.2 Second-Phase Shape: Interfacial Energy Effects
147
3.4.2.1 Fully Coherent Precipitates
147
3.4.2.2 Partially Coherent Precipitates
148
3.4.2.3 Incoherent Precipitates
150
3.4.2.4 Precipitates on Grain Boundaries
151
3.4.3 Second-Phase Shape: Misfit Strain Effects
152
3.4.3.1 Fully Coherent Precipitates
152
3.4.3.2 Incoherent Inclusions
155
3.4.3.3 Platelike Precipitates
156
3.4.4 Coherency Loss
157
3.4.5 Glissile Interfaces
160
3.4.6 Solid/Liquid Interfaces
165
3.5 Interface Migration
167
3.5.1 Diffusion-Controlled and Interface-Controlled Growth
170
Exercises
176
References
178
Further Reading
179
Chapter 4 Solidification 181
4.1 Nucleation in Pure Metals
181
4.1.1 Homogeneous Nucleation
182
4.1.2 Homogeneous Nucleation Rate
186
4.1.3 Heterogeneous Nucleation
188
4.1.4 Nucleation of Melting
192
4.2 Growth of a Pure Solid
193
4.2.1 Continuous Growth
193
4.2.2 Lateral Growth
194
4.2.3 Heat Flow and Interface Stability
197
4.3 Alloy Solidification
200
4.3.1 Solidification of Single-Phase Alloys
200
4.3.2 Eutectic Solidification
212
4.3.3 Off-Eutectic Alloys
218
4.3.4 Peritectic Solidification
220
4.4 Solidification of Ingots and Castings
221
4.4.1 Ingot Structure
222
4.4.2 Segregation in Ingots and Castings
225
4.4.3 Continuous Casting
226
4.5 Solidification of Fusion Welds
230
4.6 Solidification during Quenching from the Melt
235
4.7 Metallic Glasses
236
4.7.1 Thermodynamics and Kinetics
237
4.8 Case Studies of Some Practical Castings and Welds
239
4.8.1 Casting of Carbon and Low-Alloy Steels
239
4.8.2 Casting of High-Speed Steels
241
Exercises
247
References
249
Further Reading
249
Chapter 5 Diffusional Transformations in Solids 251
5.1 Homogeneous Nucleation in Solids
253
5.2 Heterogeneous Nucleation
259
5.2.1 Rate of Heterogeneous Nucleation
263
5.3 Precipitate Growth
265
5.3.1 Growth behind Planar Incoherent Interfaces
266
5.3.2 Diffusion-Controlled Lengthening of Plates or Needles
269
5.3.3 Thickening of Platelike Precipitates
271
5.4 Overall Transformation Kinetics: TTT Diagrams
273
5.5 Precipitation in Age-Hardening Alloys
276
5.5.1 Precipitation in Aluminum–Copper Alloys
277
5.5.2 Precipitation in Aluminum–Silver Alloys
285
5.5.3 Quenched-In Vacancies
286
5.5.4 Age Hardening
288
5.5.5 Spinodal Decomposition
290
5.5.6 Particle Coarsening
295
5.6 Precipitation of Ferrite from Austenite
299
5.6.1 Case Study: Ferrite Nucleation and Growth
304
5.7 Cellular Precipitation
310
5.8 Eutectoid Transformations
314
5.8.1 Pearlite Reaction in Fe–C Alloys
314
5.8.2 Bainite Transformation
319
5.8.3 Effect of Alloying Elements on Hardenability
327
5.8.4 Continuous Cooling Diagrams
332
5.8.5 Fibrous and Interphase Precipitation in Alloy Steels
334
5.8.6 Rule of Scheil
336
5.9 Massive Transformations
337
5.10 Ordering Transformations
342
5.11 Case Studies
349
5.11.1 Titanium Forging Alloys
349
5.11.2 Weldability of Low-Carbon and Microalloyed Rolled Steels
353
5.11.3 Very Low-Carbon Bainitic Steel with High Strength and Toughness
356
5.11.4 Very Fine Bainite
357
Exercises
360
References
362
Further Reading
364
Chapter 6 Diffusionless Transformations 367
6.1 Characteristics of Diffusionless Transformations
368
6.1.1 Solid Solution of Carbon in Iron
371
6.2 Martensite rv,,tallograplw
373
6.2.1 Bain Model of the fcc —> bct Transformation
375
6.2.2 Comparison of Crystallographic Theory with Experimental Results
379
6.3 Theories of Martensite Nucleation
380
6.3.1 Formation of Coherent Nuclei of Martensite
381
6.3.2 Role of Dislocations in Martensite Nucleation
384
6.3.3 Dislocation Strain Energy Assisted Transformation
387
6.4 Martensite Growth
391
6.4.1 Growth of Lath Martensite
392
6.4.2 Plate Martensite
394
6.4.3 Stabilization
397
6.4.4 Effect of External Stresses
397
6.4.5 Role of Grain Size
397
6.5 Premartensite Phenomena
398
6.6 Tempering of Ferrous Martensites
399
6.7 Case Studies
408
6.7.1 Carbon and Low-Alloy Quenched and Tempered Steels
408
6.7.2 Controlled Transformation Steels
409
6.7.3 TRIP-Assisted Steels
411
6.7.4 "Shape-Memory" Metal: Nitinol
415
Exercises
417
References
418
Further Reading
420
Solutions to Exercises 421
Index 491
Raahe Steel Research Center, Finland University of Exeter, UK SFK Research Center, Nieuwegein, The Netherlands