Atnaujinkite slapukų nuostatas

El. knyga: Phase Transitions in Materials

(California Institute of Technology)
  • Formatas: PDF+DRM
  • Išleidimo metai: 14-May-2020
  • Leidėjas: Cambridge University Press
  • Kalba: eng
  • ISBN-13: 9781108624503
  • Formatas: PDF+DRM
  • Išleidimo metai: 14-May-2020
  • Leidėjas: Cambridge University Press
  • Kalba: eng
  • ISBN-13: 9781108624503

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

The new edition of this popular textbook provides a fundamental approach to phase transformations and thermodynamics of materials. Explanations are emphasised at the level of atoms and electrons, and it comprehensively covers the classical topics from classical metallurgy to nanoscience and magnetic phase transitions. The book has three parts, covering the fundamentals of phase transformations, the origins of the Gibbs free energy, and the major phase transformations in materials science. A fourth part on advanced topics is available online. Much of the content from the first edition has been expanded, notably precipitation transformations in solids, heterogeneous nucleation, and energy, entropy and pressure. Three new chapters have been added to cover interactions within microstructures, surfaces, and solidification. Containing over 170 end-of-chapter problems, it is a valuable companion for graduate students and researchers in materials science, engineering, and applied physics.

Daugiau informacijos

The new edition of this popular textbook provides a fundamental approach to phase transformations and thermodynamics of materials.
Preface xi
Notation xiv
Part I Basic Thermodynamics and Kinetics of Phase Transformations
1(130)
1 Introduction
3(18)
1.1 What Is a Phase Transition?
3(2)
1.2 Atoms and Materials
5(1)
1.3 Pure Elements
6(4)
1.4 Alloys: Unmixing and Ordering
10(2)
1.5 What Is a Phase Transformation?
12(3)
1.6 Brief Review of Thermodynamics and Kinetics
15(4)
Problems
19(2)
2 Temperature-Composition Phase Diagrams
21(38)
2.1 Intuition and Expectations about Alloy Thermodynamics
21(6)
2.2 Free Energy Curves, Solute Conservation, and the Lever Rule
27(2)
2.3 Common Tangent Construction
29(3)
2.4 Continuous Solid Solubility Phase Diagram
32(2)
2.5 Eutectic and Peritectic Phase Diagrams
34(3)
2.6 Ternary Phase Diagrams
37(2)
2.7 Free Energy of a Solid Solution
39(5)
2.8 Unmixing Phase Diagram
44(3)
2.9 Order-Disorder Phase Diagram
47(6)
2.10 Alloy Phase Diagrams
53(2)
Problems
55(4)
3 Diffusion
59(24)
3.1 Processes of Atom Movements in Crystals
60(4)
3.2 The Diffusion Equation
64(4)
3.3 Gaussian and Error Functions in One Dimension
68(5)
3.4 Fourier Series Solutions to the Diffusion Equation
73(5)
3.5 Bessel Functions and Other Special Function Solutions
78(3)
Problems
81(2)
4 Nucleation
83(26)
4.1 Nucleation Phenomena and Terminology
83(2)
4.2 Critical Nucleus
85(4)
4.3 Heterogeneous Nucleation
89(3)
4.4 Free Energy Curves and Nucleation
92(3)
4.5 The Nucleation Rate
95(8)
4.6 Time-Dependent Nucleation
103(2)
4.7 Nucleation in Multicomponent Systems
105(2)
Problems
107(2)
5 Effects of Diffusion and Nucleation on Phase Transformations
109(22)
5.1 Nonequilibrium Processing of Materials
109(3)
5.2 Alloy Solidification with Suppressed Diffusion in the Solid
112(6)
5.3 Alloy Solidification with Suppressed Diffusion in Both Solid and Liquid
118(2)
5.4 Time, Temperature, and Transformation
120(2)
5.5 Glasses and Liquids
122(3)
5.6 Kinetics near Equilibrium
125(4)
Problems
129(2)
Part II The Atomic Origins of Thermodynamics and Kinetics
131(156)
6 Energy
133(38)
6.1 Atomic Schrodinger Equations and Formalism
133(2)
6.2 Molecular Orbital Theory of Diatomic Molecules
135(6)
6.3 Electronic Bands and the Tight-Binding Model
141(4)
6.4 Free and Nearly-Free Electrons
145(4)
6.5 Some Electronic Structures of Materials
149(6)
6.6 Elastic Constants and the Interatomic Potential
155(4)
6.7 Linear Elasticity
159(4)
6.8 Misfitting Particle
163(5)
Problems
168(3)
7 Entropy
171(33)
7.1 Counting and Entropy
171(5)
7.2 Short-Range Order and the Pair Approximation
176(3)
7.3 Materials Structures and Properties Described by Clusters
179(5)
7.4 Concept of Vibrational Entropy
184(2)
7.5 Phonon Thermodynamics
186(3)
7.6 Bond Proportion Model
189(8)
7.7 Bond-Stiffness-versus-Bond-Length Model
197(3)
Problems
200(4)
8 Pressure
204(19)
8.1 Materials under Pressure at Low Temperatures
204(5)
8.2 Thermal Pressure, a Step beyond the Harmonic Model
209(2)
8.3 Free Energies and Phase Boundaries under Pressure
211(1)
8.4 Chemical Bonding and Antibonding under Pressure
212(3)
8.5 Pressure-Driven Phase Transitions
215(4)
8.6 Activation Volume
219(1)
Problems
220(3)
9 Interactions in Microstructures and Constrained Equilibrium
223(27)
9.1 Solid-State Amorphization
224(1)
9.2 Self-Trapping
225(3)
9.3 Thermodynamics of Complex Materials
228(3)
9.4 Partitioning of Energy in Polycrystals and Single Crystals
231(2)
9.5 Coherency Strains in Chemical Unmixing
233(3)
9.6 Coupling between Unmixing Processes
236(7)
9.7 Factoring the Partition Function
243(5)
Problems
248(2)
10 Atom Movements with the Vacancy Mechanism
250(37)
10.1 Random Walk and Correlations
250(6)
10.2 Correlation Factors for Atoms and Vacancies in Alloys
256(4)
10.3 Phenomena in Alloy Diffusion
260(8)
10.4 Diffusion in a Potential Gradient
268(4)
10.5 Diffusion in a Temperature Gradient
272(2)
10.6 Nonthermodynamic Equilibrium in Driven Systems
274(3)
10.7 Vineyard's Theory of Diffusion
277(6)
Problems
283(4)
Part III Types of Phase Transformations
287(278)
11 Thermodynamics and Phase Transitions at Surfaces
289(29)
11.1 Surface Structure
289(3)
11.2 Thermodynamic Roughening Transition
292(2)
11.3 Surface Structure and Kinetics
294(3)
11.4 Energies of Grain Boundaries and Interfaces
297(6)
11.5 Anisotropic Surface Energy
303(3)
11.6 Reactions at Surfaces
306(5)
11.7 Gas Adsorption
311(2)
Problems
313(5)
12 Melting
318(24)
12.1 Structure and Thermodynamics of Melting
318(3)
12.2 Chemical Trends of Melting
321(2)
12.3 Free Energy of a Solid
323(6)
12.4 Entropy of a Liquid
329(2)
12.5 Thermodynamic Condition for the Melting Temperature
331(2)
12.6 Glass Transition
333(5)
12.7 Two Dimensions
338(2)
Problems
340(2)
13 Solidification
342(31)
13.1 Solidification Microstructures
343(5)
13.2 Alloy Solidification with Suppressed Diffusion in the Liquid
348(1)
13.3 Constitutional Supercooling
349(4)
13.4 Cellular and Dendritic Microstructures
353(5)
13.5 Dendrite Growth with Solute Segregation
358(2)
13.6 Surface Energy
360(5)
13.7 Developments in Solidification Science
365(5)
Problems
370(3)
14 Phase Transformations with Interfaces:
1. Microstructure
373(25)
14.1 Guinier--Preston Zones and Precipitation Sequences
373(3)
14.2 Precipitation at Grain Boundaries and Defects
376(4)
14.3 The Eutectoid Transformation and Pearlite
380(5)
14.4 Heat Treatments of Steel
385(4)
14.5 The Kolmogorov--Johnson--Mehl--Avrami Growth Equation
389(3)
14.6 Coarsening
392(4)
Problems
396(2)
15 Phase Transformations with Interfaces:
2. Energetics and Kinetics
398(26)
15.1 Interface Thermodynamics and Kinetics
398(5)
15.2 Atomistic Model of Interface Motion
403(3)
15.3 Local Nonequilibrium at Fast Interfaces
406(6)
15.4 Elastic Energy and Shape of Growing Plate-Like Precipitates
412(2)
15.5 Elastic Energy and Solute Atoms
414(8)
Problems
422(2)
16 Spinodal Decomposition
424(17)
16.1 Concentration Fluctuations and the Free Energy of Solution
424(2)
16.2 A Square Gradient Term in the Free Energy
426(5)
16.3 Constrained Minimization of the Free Energy
431(3)
16.4 The Diffusion Equation
434(3)
16.5 Effects of Elastic Energy on Spinodal Decomposition
437(3)
Problems
440(1)
17 Phase Field Theory
441(17)
17.1 Spatial Distribution of Phases and Interfaces
442(2)
17.2 Order Parameters as Field Quantities
444(4)
17.3 Domain Boundary Structure
448(4)
17.4 Domain Boundary Kinetics
452(4)
Problems
456(2)
18 Method of Concentration Waves and Chemical Ordering
458(24)
18.1 Structure in Real Space and Reciprocal Space
458(6)
18.2 Symmetry and the Star
464(3)
18.3 The Free Energy in k-Space with Concentration Waves
467(3)
18.4 Symmetry Invariance of Free Energy and Landau--Lifshitz Rule for Second-Order Phase Transitions
470(4)
18.5 Thermodynamics of Ordering in the Mean Field Approximation with Long-Range Interactions
474(5)
Problems
479(3)
19 Diffusionless Transformations
482(29)
19.1 Dislocations, Mechanisms, and Twinning
482(6)
19.2 Martensite
488(8)
19.3 Landau Theory of Displacive Phase Transitions
496(9)
19.4 Crystal Instabilities and Phonons
505(4)
Problems
509(2)
20 Thermodynamics of Nanomaterials
511(22)
20.1 Energies of Atoms at Grain Boundaries in Nanocrystals
511(2)
20.2 Gibbs--Thomson Effect
513(3)
20.3 Atomic Structures of Nanocrystals
516(4)
20.4 Electron Energies in Nanomaterials
520(4)
20.5 Entropy of Nanomaterials
524(5)
20.6 Magnetic Nanoparticles
529(2)
Problems
531(2)
21 Magnetic and Electronic Phase Transitions
533(32)
21.1 Overview of Magnetic and Electronic Phase Transitions
534(5)
21.2 Exchange Interactions
539(5)
21.3 Thermodynamics of Ferromagnetism
544(4)
21.4 Spin Waves
548(3)
21.5 Thermodynamics of Antiferromagnetism
551(2)
21.6 Dzyaloshinskii--Moriya Interactions and Skyrmions
553(4)
21.7 Thermodynamics of Ionic Crystals
557(2)
21.8 Ferroelectric Transition
559(2)
21.9 Domains
561(2)
Problems
563(2)
Further Reading 565(3)
References 568(11)
Index 579
Brent Fultz is the Rawn Professor of Materials Science and Applied Physics at the California Institute of Technology. His awards include the 2016 William Hume-Rothery Award of The Minerals, Metals and Materials Society. He is a fellow of the American Physical Society (APS), the Materials Research Society (MRS) and the Neutron Scattering Society of America (NSSA).