Atnaujinkite slapukų nuostatas

El. knyga: Philosophical Theories of Probability

3.74/5 (71 ratings by Goodreads)
Kitos knygos pagal šią temą:
Kitos knygos pagal šią temą:

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

The Twentieth Century has seen a dramatic rise in the use of probability and statistics in almost all fields of research. This has stimulated many new philosophical ideas on probability.
Philosophical Theories of Probability is the first book to present a clear, comprehensive and systematic account of these various theories and to explain how they relate to one another. Gillies also offers a distinctive version of the propensity theory of probability, and the intersubjective interpretation, which develops the subjective theory.
List of illustrations
x
Preface xi
Acknowledgements xiii
Introductory survey of the interpretations: some historical background
1(13)
Introductory survey of the interpretations
1(2)
Origins and development of probability theory (c. 1650 to c. 1800): mathematics
3(5)
Origins and development of probability theory (c. 1650 to c. 1800): practical applications and philosophy
8(6)
The classical theory
14(11)
Universal determinism and Laplace's demon
14(3)
Equally possible cases
17(1)
Janus-faced probability
18(4)
Why was probability theory not developed in the Ancient World?
22(3)
The logical theory
25(25)
Cambridge in the Edwardian era
25(4)
Probability as a logical relation
29(4)
Measurable and non-measurable probabilities: the Principle of Indifference
33(4)
Paradoxes of the Principle of Indifference
37(5)
Possible solutions to the paradoxes
42(8)
The subjective theory
50(38)
Ramsey's criticisms of Keynes
52(1)
Subjective foundations for mathematical probability: the Ramsey-De Finetti theorem
53(12)
A comparison of the axiom system given here with the Kolmogorov axioms
65(4)
Apparently objective probabilities in the subjective theory: exchangeability
69(6)
The relation between independence and exchangeability
75(2)
Criticism of De Finetti's exchangeability reduction
77(6)
Some objections to Bayesianism
83(2)
De Finetti's route to subjective probability
85(3)
The frequency theory
88(25)
Probability theory as a science
88(4)
The empirical laws of probability
92(4)
The limiting frequency definition of probability
96(9)
The problem of randomness
105(4)
The relation between Von Mises' axioms and the Kolmogorov axioms
109(4)
The propensity theory: (I) general survey
113(24)
Popper's introduction of the propensity theory
114(5)
Can there be objective probabilities of single events?
119(6)
Classification of propensity theories
125(1)
The propensity theories of Miller, the later Popper and Fetzer
126(3)
Propensity and causality: Humphreys' paradox
129(8)
The propensity theory: (II) development of a particular version
137(32)
Criticisms of operationalism: a non-operationalist theory of conceptual innovation in the natural sciences
138(7)
A falsifying rule for probability statements
145(5)
Derivation of the empirical laws of probability
150(10)
The Kolmogorov axioms and the propensity theory
160(9)
Intersubjective probability and pluralist views of probability
169(18)
Intersubjective probability
169(6)
The spectrum from subjective to objective
175(5)
Pluralist views of probability
180(7)
An example of pluralism: differences between the natural and social sciences
187(19)
General arguments for interpreting probabilities in economics as epistemological rather than objective
188(7)
Soros on the difference between the natural and social sciences
195(5)
Operationalism is appropriate for the social sciences, but not for the natural sciences
200(6)
Notes 206(6)
References 212(6)
Index 218


Gillies, Donald