|
|
xi | |
Preface |
|
xiii | |
Series Preface |
|
xv | |
|
1 Ionizing Radiation Induced Luminescence |
|
|
1 | (38) |
|
|
|
1 | (2) |
|
1.2 Interactions of Ionizing Radiation with Matter |
|
|
3 | (1) |
|
|
4 | (14) |
|
1.3.1 Energy Conversion Mechanism |
|
|
4 | (1) |
|
|
5 | (3) |
|
1.3.3 Scintillation Light Yield and Energy Resolution |
|
|
8 | (6) |
|
|
14 | (3) |
|
|
17 | (1) |
|
1.3.6 Temperature Dependence |
|
|
18 | (1) |
|
1.4 Ionizing Radiation Induced Storage Luminescence |
|
|
18 | (8) |
|
1.4.1 General Description |
|
|
18 | (1) |
|
1.4.2 Analytical Description of TSL |
|
|
19 | (5) |
|
1.4.3 Analytical Description of OSL |
|
|
24 | (2) |
|
1.5 Relationship of Scintillation and Storage Luminescence |
|
|
26 | (3) |
|
1.6 Common Characterization Techniques of Ionizing Radiation Induced Luminescence Properties |
|
|
29 | (6) |
|
|
35 | (4) |
|
|
39 | (28) |
|
|
|
39 | (1) |
|
2.2 Basic Electronic Processes in Organic Scintillators |
|
|
40 | (11) |
|
2.2.1 Electronic States and Excited States Dynamics of Organic Molecules |
|
|
40 | (3) |
|
2.2.2 Excitation Energy Transfer |
|
|
43 | (7) |
|
2.2.3 Scintillation Dynamics in Organic Scintillators at High Linear Energy Transfer |
|
|
50 | (1) |
|
|
51 | (3) |
|
2.4 Organic Crystalline Scintillators |
|
|
54 | (1) |
|
2.5 Plastic Scintillators |
|
|
55 | (4) |
|
2.6 Organic--Inorganic Hybrid Scintillators |
|
|
59 | (2) |
|
2.6.1 Loaded Organic Scintillators |
|
|
59 | (1) |
|
2.6.2 Organic--Inorganic Nanocomposite Scintillators |
|
|
60 | (1) |
|
|
61 | (6) |
|
3 Inorganic Oxide Scintillators |
|
|
67 | (24) |
|
|
|
|
|
67 | (1) |
|
|
67 | (3) |
|
3.3 Outlines of Oxide Scintillators |
|
|
70 | (3) |
|
|
73 | (4) |
|
3.4.1 Ce:Gd2SiO5 (Ce:GSO) |
|
|
73 | (1) |
|
3.4.2 Ce:Lu2SiO5 (Ce:LSO) |
|
|
74 | (2) |
|
3.4.3 Ce:Gd2Si267 (Ce:GPS) |
|
|
76 | (1) |
|
|
77 | (1) |
|
|
77 | (5) |
|
3.5.1 Ce:Y3Al5O12 (Ce:YAG) |
|
|
77 | (2) |
|
3.5.2 Ce:Lu3Al5O12 (Ce:LuAG), Pr:Lu, A1, 012 (PnLuAG) |
|
|
79 | (1) |
|
3.5.3 Ce:Gd3Al2Ga3O12 (Ce:GAGG) |
|
|
79 | (1) |
|
3.5.4 Ce:Tb3Al5O12 (Ce:TAG) |
|
|
80 | (2) |
|
|
82 | (1) |
|
|
82 | (1) |
|
3.6.2 CerLuAlO3 (Ce:LuAP) |
|
|
82 | (1) |
|
3.7 Materials with Intrinsic Luminescence |
|
|
83 | (2) |
|
|
83 | (1) |
|
|
84 | (1) |
|
|
85 | (1) |
|
|
85 | (6) |
|
4 Inorganic Fluoride Scintillators |
|
|
91 | (30) |
|
|
|
|
|
|
|
91 | (3) |
|
4.2 Crystal Growth of Fluorides |
|
|
94 | (6) |
|
4.2.1 Classification of Methods for Crystal Growth |
|
|
94 | (1) |
|
4.2.2 Furnace Materials, Atmosphere, and Scavengers for Fluoride Crystal Growth |
|
|
95 | (1) |
|
4.2.3 Fluoride Crystal Growth Methods by Pulling Out from the Melt |
|
|
96 | (2) |
|
4.2.4 Fluoride Crystal Growth Methods by Solidifying the Melt in the Crucible |
|
|
98 | (1) |
|
4.2.5 Fluoride Crystal Growth Methods Without Using Crucibles |
|
|
99 | (1) |
|
4.3 Outline of Fluoride Scintillators |
|
|
100 | (1) |
|
4.4 Fluoride Scintillators for y-Ray Detection |
|
|
101 | (5) |
|
4.4.1 Fluoride Scintillators Based on Luminescence from 5d-4f Transitions of Ce3+Ions |
|
|
101 | (1) |
|
4.4.2 Fluoride Scintillators Based on Core-Valence Luminescence |
|
|
102 | (3) |
|
4.4.3 VUV Emitting Fluoride Scintillators Doped with Nd3+, Er3+, and Tm3+ Ions |
|
|
105 | (1) |
|
4.5 Fluoride Scintillators for Neutron Detection |
|
|
106 | (7) |
|
4.5.1 Review for Neutron Scintillators |
|
|
106 | (2) |
|
4.5.2 LiCaAlF6 Single Crystals |
|
|
108 | (3) |
|
4.5.3 LiF/CaF2 Eutectic Composites |
|
|
111 | (2) |
|
4.6 Fluoride Scintillators for Charged Particle Detection |
|
|
113 | (4) |
|
4.6.1 Methods for Charged Particle Detection |
|
|
113 | (2) |
|
4.6.2 CaF2 Based Scintillators for Charged Particle Detection |
|
|
115 | (2) |
|
|
117 | (4) |
|
5 Inorganic Halide Scintillators |
|
|
121 | (26) |
|
|
5.1 Introduction: History of Inorganic Halide Scintillator Research and Development |
|
|
121 | (1) |
|
5.2 Characteristics of Halide Materials |
|
|
122 | (3) |
|
5.2.1 Formation of Color Center and Self-Trapped Exciton |
|
|
122 | (1) |
|
|
123 | (2) |
|
5.3 Basic Techniques for Halide Scintillation Crystal Growth |
|
|
125 | (2) |
|
5.4 Novel Ternary and Quaternary Halide Scintillators |
|
|
127 | (8) |
|
5.4.1 Alkali Halide-Rare Earth Halide (AX--REX3) |
|
|
127 | (3) |
|
5.4.2 Alkali Halide-Alkalin Earth Halide (AX--AEX2) |
|
|
130 | (4) |
|
|
134 | (1) |
|
5.5 Mixed-Anion Halide Scintillators |
|
|
135 | (2) |
|
5.6 Next Generation of Halide Scintillators |
|
|
137 | (4) |
|
5.6.1 Hf- and Tl-Based Halide Scintillators |
|
|
137 | (4) |
|
|
141 | (6) |
|
6 Semiconductor Scintillators |
|
|
147 | (34) |
|
|
|
147 | (2) |
|
6.2 Photoluminescence and Scintillation Mechanisms in Semiconductors |
|
|
149 | (5) |
|
6.3 Various Semiconductor Scintillators |
|
|
154 | (7) |
|
6.3.1 Undoped Semiconductor Scintillator |
|
|
155 | (3) |
|
6.3.2 Doped Semiconductor Scintillator |
|
|
158 | (3) |
|
|
161 | (4) |
|
6.5 Organic--Inorganic Perovskite-Type Compounds |
|
|
165 | (13) |
|
|
165 | (1) |
|
6.5.2 Materials and Structures |
|
|
166 | (1) |
|
|
167 | (2) |
|
6.5.4 Fundamental Optical Property |
|
|
169 | (4) |
|
|
173 | (5) |
|
|
178 | (3) |
|
7 Thermally Stimulated Luminescent (TSL) Materials |
|
|
181 | (44) |
|
|
|
181 | (3) |
|
|
184 | (6) |
|
7.2.1 Basic Principles of TSL |
|
|
184 | (1) |
|
7.2.2 Theory and Measurement of Glow Curves |
|
|
185 | (5) |
|
7.3 TSL Materials: Fluoride, Oxides, Sulfates, and Borate |
|
|
190 | (16) |
|
|
190 | (8) |
|
|
198 | (4) |
|
|
202 | (2) |
|
|
204 | (2) |
|
7.4 TSL Dosimetric Properties for Photons, Charged Particles, and Neutrons |
|
|
206 | (8) |
|
7.4.1 TSL Dosimetric Properties for Photons |
|
|
206 | (5) |
|
7.4.2 TSL Dosimetric Properties for Charged Particles |
|
|
211 | (3) |
|
7.4.3 TSL Dosimetric Properties for Neutrons |
|
|
214 | (1) |
|
7.5 Two-Dimensional (2-D) TSL Dosimetry |
|
|
214 | (6) |
|
|
214 | (1) |
|
|
215 | (1) |
|
7.5.3 Measurement Systems |
|
|
216 | (2) |
|
7.5.4 Application of 2-D TSLDs in Photon Beam Radiotherapy |
|
|
218 | (2) |
|
7.5.5 Outlook for 2-D TSLDs |
|
|
220 | (1) |
|
|
220 | (5) |
|
8 Optically-Stimulated Luminescent Dosimeters |
|
|
225 | (22) |
|
|
|
|
225 | (1) |
|
8.2 Principles of OSL Phenomenon |
|
|
226 | (9) |
|
8.3 OSL Materials and Dosimeters |
|
|
235 | (4) |
|
|
239 | (3) |
|
|
242 | (1) |
|
|
243 | (4) |
|
9 Radiophotoluminescence (RPL) |
|
|
247 | (36) |
|
|
|
|
|
|
247 | (1) |
|
9.2 RPL Phenomenon and the Definition |
|
|
248 | (1) |
|
9.3 RPL Materials and Applications |
|
|
249 | (29) |
|
|
249 | (3) |
|
9.3.2 Ag-Doped Sodium-Aluminophosphate Glasses |
|
|
252 | (8) |
|
|
260 | (4) |
|
|
264 | (4) |
|
|
268 | (8) |
|
9.3.6 Other RPL Materials |
|
|
276 | (2) |
|
|
278 | (1) |
|
|
278 | (5) |
|
10 New Materials for Radiation Detectors: Transparent Ceramics |
|
|
283 | (28) |
|
|
|
|
10.1 Introduction of Transparent Ceramic Materials |
|
|
283 | (4) |
|
10.1.1 Light Scattering Sources in Ceramics |
|
|
283 | (2) |
|
10.1.2 History and Applications on Transparent Ceramics |
|
|
285 | (2) |
|
10.2 Preparation Methodology |
|
|
287 | (5) |
|
10.2.1 Sintering Mechanism of Ceramics |
|
|
287 | (3) |
|
10.2.2 Effect of Residual Pores |
|
|
290 | (1) |
|
10.2.3 Preparation Methods of Transparent Ceramics |
|
|
291 | (1) |
|
10.3 Transparent Materials |
|
|
292 | (1) |
|
10.4 Transparent Ceramic Scintillator |
|
|
293 | (7) |
|
10.4.1 Sesquioxide (Such as Y2O3, Gd2O3, and Lu2O3) |
|
|
293 | (1) |
|
|
294 | (1) |
|
10.4.3 Garnet Materials (Such as YAG, LuAG, and GAGG) |
|
|
294 | (2) |
|
|
296 | (1) |
|
|
296 | (1) |
|
10.4.6 La2Zr2O7 and La2Hf2O7 |
|
|
296 | (1) |
|
|
296 | (1) |
|
|
297 | (1) |
|
|
298 | (1) |
|
|
299 | (1) |
|
|
299 | (1) |
|
|
300 | (1) |
|
10.5 Transparent Ceramics for Dosimeter |
|
|
300 | (6) |
|
|
300 | (2) |
|
|
302 | (1) |
|
|
302 | (1) |
|
|
303 | (1) |
|
|
304 | (1) |
|
10.5.6 Y3Al5-xGaxO12 (YAGG) |
|
|
305 | (1) |
|
|
306 | (5) |
|
11 Luminescence in Glass-Based Materials by Ionizing Radiation |
|
|
311 | (36) |
|
|
|
|
311 | (1) |
|
11.2 Structural and Physical Properties of Glass |
|
|
312 | (8) |
|
11.3 Attenuation of Quantum Beam as Shielding Materials |
|
|
320 | (1) |
|
11.4 Defect Formation in Oxide Glass by Quantum Beam Irradiation |
|
|
320 | (3) |
|
11.5 Scintillation in Oxide Glass |
|
|
323 | (6) |
|
11.5.1 Glass Scintillators for X-Ray and y-Ray |
|
|
323 | (2) |
|
11.5.2 Glass Scintillators for Neutrons |
|
|
325 | (3) |
|
11.5.3 Storage Luminescence in Glass |
|
|
328 | (1) |
|
11.6 Scintillation and Dosimetry in Non-oxide Glass |
|
|
329 | (6) |
|
11.7 Preparation of Glass |
|
|
335 | (3) |
|
|
335 | (2) |
|
11.7.2 Vapor Process and Fiber Drawing |
|
|
337 | (1) |
|
|
338 | (1) |
|
11.8 Future Prospectives for Glass-Based Materials |
|
|
338 | (1) |
|
|
339 | (1) |
|
|
339 | (8) |
|
12 Detectors Using Radiation Induced Luminescence |
|
|
347 | (40) |
|
|
|
347 | (2) |
|
12.2 General Issues to Manufacturing the Detector |
|
|
349 | (3) |
|
12.3 Scintillation Detectors for Gamma-Rays and X-Rays |
|
|
352 | (14) |
|
12.3.1 Gamma-Ray Spectrometer |
|
|
352 | (4) |
|
12.3.2 Survey Meter and Area Monitor |
|
|
356 | (2) |
|
12.3.3 Scintillation Detectors for Medical Applications |
|
|
358 | (6) |
|
12.3.4 Scintillation Detectors for Other Applications |
|
|
364 | (2) |
|
12.4 Scintillation Detectors for Charged Particles |
|
|
366 | (2) |
|
12.5 Scintillation Detectors for Neutrons |
|
|
368 | (12) |
|
12.5.1 Thermal Neutron Detectors |
|
|
368 | (9) |
|
12.5.2 Fast Neutron Detectors |
|
|
377 | (3) |
|
|
380 | (3) |
|
12.6.1 TL-Based Dosimetry System |
|
|
380 | (1) |
|
12.6.2 OSL-Based Dosimetry System |
|
|
381 | (1) |
|
12.6.3 RPL-Based Dosimetry System |
|
|
382 | (1) |
|
12.7 OSL-Based Imaging System |
|
|
383 | (1) |
|
|
384 | (3) |
Index |
|
387 | |