Atnaujinkite slapukų nuostatas

El. knyga: Phosphors for Radiation Detectors

Edited by (Tohoku University, Aoba, Japan), Edited by (Nara Institute of Science and Technology, Ikoma, Japan)

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

Phosphors for Radiation Detector

Phosphors for Radiation Detectors

Discover a comprehensive overview of luminescence phosphors for radiation detection

In Phosphors for Radiation Detection, accomplished researchers Takayuki Yanagida and Masanori Koshimizu deliver a state-of-the-art exploration of the use of phosphors in radiation detection. The internationally recognized contributors discuss the fundamental physics and detector functions associated with the technology with a focus on real-world applications.

The book discusses all forms of luminescence phosphors for radiation detection used in a variety of fields, including medicine, security, resource exploration, environmental monitoring, and high energy physics.

Readers will discover discussions of dosimeter materials, including thermally stimulated luminescent materials, optically stimulated luminescent materials, and radiophotoluminescence materials. The book also covers transparent ceramics and glasses and a broad range of devices used in this area.

Phosphors for Radiation Detection also includes:

  • Thorough introductions to ionizing radiation induced luminescence, organic scintillators, and inorganic oxide scintillators
  • Comprehensive explorations of luminescent materials, including discussions of materials synthesis and their use in gamma-ray, neutron, and charged particle detection
  • Practical discussions of semiconductor scintillators, including treatments of organic-inorganic layered perovskite materials for scintillation detectors
  • In-depth examinations of thermally stimulated luminescent materials, including discussions of the dosimetric properties for photons, charged particles, and neutrons

Relevant for research physicists, materials scientists, and electrical engineers, Phosphors for Radiation Detection is an also an indispensable resource for postgraduate and senior undergraduate students working in detection physics.

List of Contributors
xi
Preface xiii
Series Preface xv
1 Ionizing Radiation Induced Luminescence
1(38)
Takayuki Yanagida
1.1 Introduction
1(2)
1.2 Interactions of Ionizing Radiation with Matter
3(1)
1.3 Scintillation
4(14)
1.3.1 Energy Conversion Mechanism
4(1)
1.3.2 Emission Mechanism
5(3)
1.3.3 Scintillation Light Yield and Energy Resolution
8(6)
1.3.4 Timing Properties
14(3)
1.3.5 Radiation Hardness
17(1)
1.3.6 Temperature Dependence
18(1)
1.4 Ionizing Radiation Induced Storage Luminescence
18(8)
1.4.1 General Description
18(1)
1.4.2 Analytical Description of TSL
19(5)
1.4.3 Analytical Description of OSL
24(2)
1.5 Relationship of Scintillation and Storage Luminescence
26(3)
1.6 Common Characterization Techniques of Ionizing Radiation Induced Luminescence Properties
29(6)
References
35(4)
2 Organic Scintillators
39(28)
Masanori Koshimizu
2.1 Introduction
39(1)
2.2 Basic Electronic Processes in Organic Scintillators
40(11)
2.2.1 Electronic States and Excited States Dynamics of Organic Molecules
40(3)
2.2.2 Excitation Energy Transfer
43(7)
2.2.3 Scintillation Dynamics in Organic Scintillators at High Linear Energy Transfer
50(1)
2.3 Liquid Scintillators
51(3)
2.4 Organic Crystalline Scintillators
54(1)
2.5 Plastic Scintillators
55(4)
2.6 Organic--Inorganic Hybrid Scintillators
59(2)
2.6.1 Loaded Organic Scintillators
59(1)
2.6.2 Organic--Inorganic Nanocomposite Scintillators
60(1)
References
61(6)
3 Inorganic Oxide Scintillators
67(24)
Daisuke Nakauchi
Noriaki Kawaguchi
Takayuki Yanagida
3.1 Introduction
67(1)
3.2 Crystal Growth
67(3)
3.3 Outlines of Oxide Scintillators
70(3)
3.4 Silicate Materials
73(4)
3.4.1 Ce:Gd2SiO5 (Ce:GSO)
73(1)
3.4.2 Ce:Lu2SiO5 (Ce:LSO)
74(2)
3.4.3 Ce:Gd2Si267 (Ce:GPS)
76(1)
3.4.4 LPS
77(1)
3.5 Garnet Materials
77(5)
3.5.1 Ce:Y3Al5O12 (Ce:YAG)
77(2)
3.5.2 Ce:Lu3Al5O12 (Ce:LuAG), Pr:Lu, A1, 012 (PnLuAG)
79(1)
3.5.3 Ce:Gd3Al2Ga3O12 (Ce:GAGG)
79(1)
3.5.4 Ce:Tb3Al5O12 (Ce:TAG)
80(2)
3.6 Perovskite Materials
82(1)
3.6.1 Ce:YAlO3 (Ce:YAP)
82(1)
3.6.2 CerLuAlO3 (Ce:LuAP)
82(1)
3.7 Materials with Intrinsic Luminescence
83(2)
3.7.1 CdWO4
83(1)
3.7.2 Bi4Ge3O12 (BGO)
84(1)
3.7.3 PbWO4
85(1)
References
85(6)
4 Inorganic Fluoride Scintillators
91(30)
Noriaki Kawaguchi
Hiromi Kimura
Daisuke Nakauchi
Takumi Kato
Takayuki Yanagida
4.1 Introduction
91(3)
4.2 Crystal Growth of Fluorides
94(6)
4.2.1 Classification of Methods for Crystal Growth
94(1)
4.2.2 Furnace Materials, Atmosphere, and Scavengers for Fluoride Crystal Growth
95(1)
4.2.3 Fluoride Crystal Growth Methods by Pulling Out from the Melt
96(2)
4.2.4 Fluoride Crystal Growth Methods by Solidifying the Melt in the Crucible
98(1)
4.2.5 Fluoride Crystal Growth Methods Without Using Crucibles
99(1)
4.3 Outline of Fluoride Scintillators
100(1)
4.4 Fluoride Scintillators for y-Ray Detection
101(5)
4.4.1 Fluoride Scintillators Based on Luminescence from 5d-4f Transitions of Ce3+Ions
101(1)
4.4.2 Fluoride Scintillators Based on Core-Valence Luminescence
102(3)
4.4.3 VUV Emitting Fluoride Scintillators Doped with Nd3+, Er3+, and Tm3+ Ions
105(1)
4.5 Fluoride Scintillators for Neutron Detection
106(7)
4.5.1 Review for Neutron Scintillators
106(2)
4.5.2 LiCaAlF6 Single Crystals
108(3)
4.5.3 LiF/CaF2 Eutectic Composites
111(2)
4.6 Fluoride Scintillators for Charged Particle Detection
113(4)
4.6.1 Methods for Charged Particle Detection
113(2)
4.6.2 CaF2 Based Scintillators for Charged Particle Detection
115(2)
References
117(4)
5 Inorganic Halide Scintillators
121(26)
Yutaka Fujimoto
5.1 Introduction: History of Inorganic Halide Scintillator Research and Development
121(1)
5.2 Characteristics of Halide Materials
122(3)
5.2.1 Formation of Color Center and Self-Trapped Exciton
122(1)
5.2.2 Hygroscopicity
123(2)
5.3 Basic Techniques for Halide Scintillation Crystal Growth
125(2)
5.4 Novel Ternary and Quaternary Halide Scintillators
127(8)
5.4.1 Alkali Halide-Rare Earth Halide (AX--REX3)
127(3)
5.4.2 Alkali Halide-Alkalin Earth Halide (AX--AEX2)
130(4)
5.4.3 Elpasolite
134(1)
5.5 Mixed-Anion Halide Scintillators
135(2)
5.6 Next Generation of Halide Scintillators
137(4)
5.6.1 Hf- and Tl-Based Halide Scintillators
137(4)
References
141(6)
6 Semiconductor Scintillators
147(34)
Naoki Kawano
6.1 Introduction
147(2)
6.2 Photoluminescence and Scintillation Mechanisms in Semiconductors
149(5)
6.3 Various Semiconductor Scintillators
154(7)
6.3.1 Undoped Semiconductor Scintillator
155(3)
6.3.2 Doped Semiconductor Scintillator
158(3)
6.4 Quantum Size Effect
161(4)
6.5 Organic--Inorganic Perovskite-Type Compounds
165(13)
6.5.1 Introduction
165(1)
6.5.2 Materials and Structures
166(1)
6.5.3 Sample Preparation
167(2)
6.5.4 Fundamental Optical Property
169(4)
6.5.5 Scintillation
173(5)
References
178(3)
7 Thermally Stimulated Luminescent (TSL) Materials
181(44)
Kiyomitsu Shinsho
7.1 Introduction
181(3)
7.2 TSL Phenomenon
184(6)
7.2.1 Basic Principles of TSL
184(1)
7.2.2 Theory and Measurement of Glow Curves
185(5)
7.3 TSL Materials: Fluoride, Oxides, Sulfates, and Borate
190(16)
7.3.1 Fluorides
190(8)
7.3.2 Oxides
198(4)
7.3.3 Sulfates
202(2)
7.3.4 Borates
204(2)
7.4 TSL Dosimetric Properties for Photons, Charged Particles, and Neutrons
206(8)
7.4.1 TSL Dosimetric Properties for Photons
206(5)
7.4.2 TSL Dosimetric Properties for Charged Particles
211(3)
7.4.3 TSL Dosimetric Properties for Neutrons
214(1)
7.5 Two-Dimensional (2-D) TSL Dosimetry
214(6)
7.5.1 Introduction
214(1)
7.5.2 Types of 2-D TSLDs
215(1)
7.5.3 Measurement Systems
216(2)
7.5.4 Application of 2-D TSLDs in Photon Beam Radiotherapy
218(2)
7.5.5 Outlook for 2-D TSLDs
220(1)
References
220(5)
8 Optically-Stimulated Luminescent Dosimeters
225(22)
Hidehito Nanto
Go Okada
8.1 Introduction
225(1)
8.2 Principles of OSL Phenomenon
226(9)
8.3 OSL Materials and Dosimeters
235(4)
8.4 Applications of OSL
239(3)
8.5 Future Perspective
242(1)
References
243(4)
9 Radiophotoluminescence (RPL)
247(36)
Go Okada
Takayuki Yanagida
Hidehito Nanto
Safa Kasap
9.1 Introduction
247(1)
9.2 RPL Phenomenon and the Definition
248(1)
9.3 RPL Materials and Applications
249(29)
9.3.1 Introduction
249(3)
9.3.2 Ag-Doped Sodium-Aluminophosphate Glasses
252(8)
9.3.3 Al2O3:C, Mg
260(4)
9.3.4 LiF
264(4)
9.3.5 Sm-Doped Compounds
268(8)
9.3.6 Other RPL Materials
276(2)
9.4 Conclusions
278(1)
References
278(5)
10 New Materials for Radiation Detectors: Transparent Ceramics
283(28)
Takumi Kato
Noriaki Kawaguchi
Takayuki Yanagida
10.1 Introduction of Transparent Ceramic Materials
283(4)
10.1.1 Light Scattering Sources in Ceramics
283(2)
10.1.2 History and Applications on Transparent Ceramics
285(2)
10.2 Preparation Methodology
287(5)
10.2.1 Sintering Mechanism of Ceramics
287(3)
10.2.2 Effect of Residual Pores
290(1)
10.2.3 Preparation Methods of Transparent Ceramics
291(1)
10.3 Transparent Materials
292(1)
10.4 Transparent Ceramic Scintillator
293(7)
10.4.1 Sesquioxide (Such as Y2O3, Gd2O3, and Lu2O3)
293(1)
10.4.2 Gd2O2S (GOS)
294(1)
10.4.3 Garnet Materials (Such as YAG, LuAG, and GAGG)
294(2)
10.4.4 Lu2SiO5 (LSO)
296(1)
10.4.5 SrHfO3
296(1)
10.4.6 La2Zr2O7 and La2Hf2O7
296(1)
10.4.7 ZnO
296(1)
10.4.8 BaF2
297(1)
10.4.9 CeF3
298(1)
10.4.10 CsBr
299(1)
10.4.11 LaBr3
299(1)
10.4.12 SrI2
300(1)
10.5 Transparent Ceramics for Dosimeter
300(6)
10.5.1 Al2O3
300(2)
10.5.2 CaF2
302(1)
10.5.3 MgO
302(1)
10.5.4 MgF2
303(1)
10.5.5 CsBr
304(1)
10.5.6 Y3Al5-xGaxO12 (YAGG)
305(1)
References
306(5)
11 Luminescence in Glass-Based Materials by Ionizing Radiation
311(36)
Hirokazu Masai
Kenji Shinozaki
11.1 Introduction
311(1)
11.2 Structural and Physical Properties of Glass
312(8)
11.3 Attenuation of Quantum Beam as Shielding Materials
320(1)
11.4 Defect Formation in Oxide Glass by Quantum Beam Irradiation
320(3)
11.5 Scintillation in Oxide Glass
323(6)
11.5.1 Glass Scintillators for X-Ray and y-Ray
323(2)
11.5.2 Glass Scintillators for Neutrons
325(3)
11.5.3 Storage Luminescence in Glass
328(1)
11.6 Scintillation and Dosimetry in Non-oxide Glass
329(6)
11.7 Preparation of Glass
335(3)
11.7.1 Melt Process
335(2)
11.7.2 Vapor Process and Fiber Drawing
337(1)
11.7.3 Liquid Process
338(1)
11.8 Future Prospectives for Glass-Based Materials
338(1)
Acknowledgement
339(1)
References
339(8)
12 Detectors Using Radiation Induced Luminescence
347(40)
Kenichi Watanabe
12.1 Introduction
347(2)
12.2 General Issues to Manufacturing the Detector
349(3)
12.3 Scintillation Detectors for Gamma-Rays and X-Rays
352(14)
12.3.1 Gamma-Ray Spectrometer
352(4)
12.3.2 Survey Meter and Area Monitor
356(2)
12.3.3 Scintillation Detectors for Medical Applications
358(6)
12.3.4 Scintillation Detectors for Other Applications
364(2)
12.4 Scintillation Detectors for Charged Particles
366(2)
12.5 Scintillation Detectors for Neutrons
368(12)
12.5.1 Thermal Neutron Detectors
368(9)
12.5.2 Fast Neutron Detectors
377(3)
12.6 Personal Dosimeters
380(3)
12.6.1 TL-Based Dosimetry System
380(1)
12.6.2 OSL-Based Dosimetry System
381(1)
12.6.3 RPL-Based Dosimetry System
382(1)
12.7 OSL-Based Imaging System
383(1)
References
384(3)
Index 387
Edited by

Takayuki Yanagida, PhD, is Professor at the Graduate School of Materials Science, Nara Institute of Science and Technology in Japan. He obtained his doctorate from the University of Tokyo. His research interests include inorganic crystal, transparent ceramic, and glass phosphors.

Masanori Koshimizu is Associate Professor at the Graduate School of Engineering at Tohoku University. He has authored over 160 papers in the fields of Applied Chemistry and Quantum Physical Chemistry

Series Editors

Arthur Willoughby University of Southampton, Southampton, UK

Peter Capper Ex-Leonardo MW Ltd, Southampton, UK

Safa Kasap University of Saskatchewan, Saskatoon, Canada