Atnaujinkite slapukų nuostatas

El. knyga: Photosynthesis, Productivity, and Environmental Stress

  • Formatas: EPUB+DRM
  • Išleidimo metai: 16-Sep-2019
  • Leidėjas: Wiley-Blackwell
  • Kalba: eng
  • ISBN-13: 9781119501824
Kitos knygos pagal šią temą:
  • Formatas: EPUB+DRM
  • Išleidimo metai: 16-Sep-2019
  • Leidėjas: Wiley-Blackwell
  • Kalba: eng
  • ISBN-13: 9781119501824
Kitos knygos pagal šią temą:

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

A guide to environmental fluctuations that examines photosynthesis under both controlled and stressed conditions

Photosynthesis, Productivity and Environmental Stress is a much-needed guide that explores the topics related to photosynthesis (both terrestrial and aquatic) and puts the focus on the basic effect of environmental fluctuations. The authors—noted experts on the topic—discuss photosynthesis under both controlled and stressed conditions and review new techniques for mitigating stressors including methods such as transgeneics, proteomics, genomics, ionomics, metabolomics, micromics, and more.  

In order to feed our burgeoning world population, it is vital that we must increase food production. Photosynthesis is directly related to plant growth and crop production and any fluctuation in the photosynthetic activity imposes great threat to crop productivity. Due to the environmental fluctuations plants are often exposed to the different environmental stresses that cause decreased photosynthetic rate and problems in the plant growth and development. This important book addresses this topic and:

  • Covers topics related to terrestrial and aquatic photosynthesis
  • Highlights the basic effect of environmental fluctuations
  • Explores common stressors such as drought, salinity, alkalinity, temperature, UV-radiations, oxygen deficiency, and more
  • Contains methods and techniques for improving photosynthetic efficiency for greater crop yield 

Written for biologists and environmentalists, Photosynthesis, Productivity and Environmental Stress offers an overview of the stressors affecting photosynthesis and includes possible solutions for improved crop production.

List of Contributors xiii
Preface xvii
About the Editors xxi
1 Effects of Organic Pollutants on Photosynthesis 1(26)
Rupal Singh Tomar
Bhupendra Singh
Anjana Jajoo
1.1 Introduction to Organic Pollutants
1(2)
1.2 Characteristics of the Organic Pollutants
3(1)
1.3 Sources of Organic Pollutants
3(1)
1.4 Uptake and Accumulation of Organic Pollutants in Plants
4(1)
1.5 Effects of Organic Pollutants on Plant Growth
5(2)
1.6 Effects of Organic Pollutants on Photosynthesis
7(10)
1.6.1 Effects of Pesticides on the Light Reactions
7(2)
1.6.2 Effects of Pesticides on the Dark Reactions
9(2)
1.6.3 Effects of Antibiotics on the Light Reactions
11(2)
1.6.4 Effects of Antibiotics on the Dark Reactions
13(1)
1.6.5 Effects of Bisphenol A on the Light Reactions
13(1)
1.6.6 Effects of Bisphenol A on the Dark Reactions
14(1)
1.6.7 Effects of Polycyclic Aromatic Hydrocarbons on the Light Reactions
14(2)
1.6.8 Effects of Polycyclic Aromatic Hydrocarbons on the Dark Reactions
16(1)
1.7 Conclusion and Future Prospects
17(1)
References
18(9)
2 Cold Stress and Photosynthesis 27(12)
Aditya Banerjee
Aryadeep Roychoudhury
2.1 Introduction
27(1)
2.2 Primary Targets of Cold Stress in Plants
27(1)
2.3 Cold Stress Distorts the Chloroplast Membrane Integrity
28(1)
2.4 Cold Stress Damages the Photosynthetic Apparatus
28(3)
2.5 Cold Stress Affects Carbon Dioxide (CO2) Fixation
31(1)
2.6 Strategies to Ameliorate Cold Stress and Improve Photosynthesis
32(1)
2.7 Conclusion and Future Perspectives
33(1)
Acknowledgements
33(1)
References
33(6)
3 High-Temperature Stress and Photosynthesis Under Pathological Impact 39(26)
Murat Dikilitas
Eray Simsek
Sema Karakas
Parvaiz Ahmad
3.1 Introduction
39(2)
3.2 High-Temperature Stress on Crop Plants
41(2)
3.3 High-Temperature Stress on Photosynthesis Mechanisms
43(2)
3.4 Impact of Pathogens on Photosynthesis Mechanisms Under Temperature Stress
45(6)
3.5 Genomic, Biochemical, and Physiological Approaches for Crop Plants Under Temperature and Pathogenic Stresses
51(4)
3.6 Conclusions and Future Prospects
55(1)
References
55(10)
4 Effect of Light Intensity on Photosynthesis 65(10)
Rinukshi Wimalasekera
4.1 Introduction
65(1)
4.2 Characteristics of Light
66(1)
4.2.1 Photosynthetically Active Radiation (PAR)
66(1)
4.3 Light Absorption and Pigments
67(1)
4.3.1 Dissipation of Excess Light Energy
67(1)
4.3.2 Photoinhibition
68(1)
4.4 Light Absorption by Leaves
68(2)
4.4.1 Light Absorption and the Anatomy, Morphology, and Biochemical Characteristics of Leaves
68(1)
4.4.2 Light-Mediated Leaf Movement
69(1)
4.4.3 Light Absorption by Sun and Shade Adapted Leaves
69(1)
4.5 Light and Photosynthetic Responses
70(1)
4.6 Conclusion and Future Prospects
70(1)
References
71(4)
5 Regulation of Water Status, Chlorophyll Content, Sugar, and Photosynthesis in Maize Under Salinity by Mineral Mobilizing Bacteria 75(20)
Yachana Jha
5.1 Introduction
75(1)
5.2 Mineral Mobilizing Bacteria
76(1)
5.3 Isolation and Identification of Mineral Mobilizing Bacteria
77(1)
5.4 Mineral Mobilizing Bacteria Maintain the Photosynthetic Efficiency of Maize Under Salinity
78(1)
5.5 Mineral Mobilizing Bacteria Maintain the Photosynthetic Efficiency of Plants by Regulating Chlorophyll Content
79(1)
5.6 Mineral Mobilizing Bacteria Maintain the Photosynthetic Efficiency .of Plants by Regulating Relative Water Content
80(2)
5.7 Mineral Mobilizing Bacteria Maintain the Photosynthetic Efficiency of Plants by Regulating Stomatal Behavior
82(1)
5.8 Mineral Mobilizing Bacteria Maintain Photosynthesis to Regulate Soluble Sugar by Altering Vascular Tissue
83(1)
5.9 Mineral Mobilizing Bacteria Maintain the Photosynthetic Efficiency of Plants by Accumulating Various Osmoprotectants
84(3)
5.10 Mineral Mobilizing Bacteria Maintain the Photosynthetic Efficiency of Plants by Regulating Sugar Biosynthesis
87(1)
5.11 Mineral Mobilizing Bacteria Maintain the Photosynthetic Efficiency of Plants by Reducing Ethylene Biosynthesis
88(1)
5.12 Mineral Mobilizing Bacteria Maintain the Photosynthetic Efficiency of Plants by Inducing Various Signaling Molecule
89(1)
5.13 Conclusion
90(1)
References
90(5)
6 Regulation of Photosynthesis Under Metal Stress 95(12)
Mumtaz Khan
Neeha Nawaz
Ifthekhar Ali
Muhammad Azam
Muhammad Rizwan
Parvaiz Ahmad
Shafaqat Ali
6.1 Introduction
95(1)
6.2 Effects of Metals on Photosynthesis
96(3)
6.2.1 Reduction in CO2 Stomatal Conductance and Mesophyll Transport
96(1)
6.2.2 Inhibition of Biosynthesis of Photosynthetic Pigments
97(1)
6.2.3 Changes in Leaf Morphology and Chloroplast Ultrastructure
97(1)
6.2.4 Induction of Reactive Oxygen Species
98(1)
6.2.5 Metal-Induced Hormonal Changes
98(1)
6.2.6 Alterations in Photosynthetic Enzymes
99(1)
6.3 Mechanisms of Photosynthesis Regulation under Metal Stress
99(3)
6.3.1 Cell Signaling and Growth Hormones
99(1)
6.3.2 Avoiding and Scavenging Reactive Oxygen Species
100(1)
6.3.3 Interconversion of Chlorophylls
101(1)
6.3.4 Role of Alleviatory Agents in Photosynthesis Regulation
101(1)
6.3.5 Photosynthesis Regulation Through Overexpression of Genes
102(1)
6.4 Conclusions
102(1)
References
102(5)
7 Heavy Metals and Photosynthesis: Recent Developments 107(28)
Zahra Souri
Amanda A. Cardoso
Cristianel da-Silva
Letuzia M. de Oliveira
Biswanath Dari
Debjani Sihi
Naser Karimi
7.1 Introduction
107(2)
7.2 Heavy Metals and Hyperaccumulation
109(4)
7.2.1 Characteristics of Hyperaccumulator Plants
110(2)
7.2.2 Hyperaccumulation and Photosynthesis
112(1)
7.3 Heavy Metals and Chloroplast Structure
113(2)
7.4 Heavy Metals and Gas-Exchange
115(1)
7.5 Heavy Metals and Photosynthetic Pigments
115(2)
7.6 Heavy Metals and Photosystems (PSI and PSII)
117(3)
7.7 Heavy Metals and Key Photosynthetic Enzymes
120(1)
7.8 Heavy Metals and Antioxidant Defense Mechanism of the Photosynthetic System
121(2)
7.9 Conclusion and Further Prospects
123(2)
References
125(10)
8 Toward Understanding the Regulation of Photosynthesis under Abiotic Stresses: Recent Developments 135(28)
Syed Sarfraz Hussain
8.1 Introduction: Abiotic Stresses, Photosynthesis and Plant Productivity
135(10)
8.1.1 Impact of Abiotic Stress on the Photosynthetic System of Plants
137(1)
8.1.2 Drought Stress
137(2)
8.1.3 Salinity Stress
139(3)
8.1.4 Cold Stress
142(2)
8.1.5 Heat Stress
144(1)
8.2 Overexpression of Photosynthesis Related Genes and Transcription Factors
145(1)
8.3 Conclusions and Future Perspectives
146(1)
References
147(16)
9 Current Understanding of the Regulatory Roles of miRNAs for Enhancing Photosynthesis in Plants Under Environmental Stresses 163(34)
Syed Sarfraz Hussain
Meeshaw Hussain
Muhammad Irian
Bujun Shi
9.1 Introduction: Interaction Between miRNAs and Plant Growth/Functional Diversity of miRNAs and Their Impact in Plant Growth
163(2)
9.2 miRNAs Involved in Photosynthesis and Other Downstream Biological Processes
165(1)
9.3 Abiotic Stresses Drastically Affect Photosynthesis and Plant Productivity
166(2)
9.4 Genome Wide miRNA Profiling Under Abiotic Stresses
168(2)
9.5 Functional Characterization of miRNAs Associated with Photosynthesis
170(2)
9.6 miRNAs and Shoot/Tiller Development
172(1)
9.7 miRNAs in Root Development
173(2)
9.8 miRNAs in Controlling Stomatal Density
175(1)
9.9 miRNAs in Hormone Signaling
175(1)
9.10 miRNAs in Controlling Nodule Development in Leguminous Crops
176(1)
9.11 Conclusion and Future Perspective
177(1)
References
178(19)
10 Mineral Mobilizing Bacteria Mediated Regulation of Secondary Metabolites for Proper Photosynthesis in Maize Under Stress 197(18)
Yachana Jha
10.1 Introduction
197(1)
10.2 Isolation and Inoculation of Mineral Mobilizing Bacteria
198(12)
10.2.1 Mineral Mobilizing Bacteria Mediated Regulation of Nutrients for Secondary Metabolites Production and Photosynthesis
200(1)
10.2.2 Mineral Mobilizing Bacteria Mediated Regulation of Chlorophyll Content for Secondary Metabolites Production and Photosynthesis
201(2)
10.2.3 Mineral Mobilizing Bacteria Mediated Regulation of Carbon/Sugar Metabolites for Secondary Metabolites Production and Photosynthesis
203(3)
10.2.4 Mineral Mobilizing Bacteria Mediated Regulation of Nitrogen Metabolites for Secondary Metabolites Production and Photosynthesis
206(1)
10.2.5 Mineral Mobilizing Bacteria Mediated Regulation of Secondary Metabolites Production and Photosynthesis Under Biotic Stress
207(1)
10.2.6 Mineral Mobilizing Bacteria Mediated Regulation of Secondary Metabolites Production and Photosynthesis Under Abiotic Stress
207(1)
10.2.7 Mineral Mobilizing Bacteria Mediated Regulation of Gene Expression for Secondary Metabolites Production and Photosynthesis
208(2)
10.3 Conclusion
210(1)
References
210(5)
11 Role of Plant Hormones in Improving Photosynthesis 215(26)
Belur Satyan Kumudini
Savita Veeranagouda Patil
11.1 Introduction
215(1)
11.2 Phytohormones: Watchdogs of Plant Growth and Development
216(5)
11.2.1 Auxins
216(1)
11.2.2 Gibberellins or Gibberellic Acids
217(1)
11.2.3 Cytokinins
217(1)
11.2.4 Ethylene
218(1)
11.2.5 Abscisic Acid
218(2)
11.2.6 Jasmonic Acid
220(1)
11.2.7 Salicylic Acid
220(1)
11.2.8 Brassinosteroids
220(1)
11.2.9 Strigolactones
221(1)
11.3 Photosynthesis
221(2)
11.3.1 Role of Plant Hormones in Photosynthesis
222(1)
11.4 Phytohormones and Abiotic Stress Tolerance vis-a-vis Photosynthesis
223(2)
11.4.1 Heavy Metals
223(1)
11.4.2 Salinity
224(1)
11.4.3 Drought
225(1)
11.5 Deciphering the Role of Phytohormones in Perceiving Photosynthesis During Biotic Stress
225(2)
11.6 Interplay Between the Phytohormones to Facilitate Photosynthesis Under Stress
227(1)
11.7 Conclusion and Future Prospects
228(1)
Acknowledgments
228(1)
References
228(13)
12 Promising Monitoring Techniques for Plant Science: Thermal and Chlorophyll Fluorescence Imaging 241(26)
Aykut Saglam
Laury Chaerle
Dominique Van Der Straeten
Roland Valcke
Abbreviations
241(1)
12.1 Introduction
241(1)
12.2 Thermal Imaging
242(7)
12.2.1 Plant Water Status and Drought Stress
243(2)
12.2.2 Salt Stress
245(1)
12.2.3 Herbicide Stress
245(1)
12.2.4 Air Humidity and Air Pollutants
245(1)
12.2.5 Ice Nucleation and Freezing
246(1)
12.2.6 Plant-Pathogen Interactions
247(2)
12.2.7 Herbivory Effects
249(1)
12.3 Chlorophyll Fluorescence Imaging
249(10)
12.3.1 Drought Stress
251(1)
12.3.2 Light Stress
252(1)
12.3.3 Herbicide Stress
252(2)
12.3.4 Air Pollutants
254(1)
12.3.5 Mineral Deficiency and Toxicity
255(1)
12.3.6 Pathogen Effects
256(2)
12.3.7 Herbivory Effects
258(1)
12.4 Conclusions and Future Perspectives
259(1)
References
260(7)
13 Introgression of C4 Pathway Gene(s) in C3 Plants to Improve Photosynthetic Carbon Assimilation for Crop Improvement: A Biotechnological Approach 267(16)
Sonam Yadav
Avinash Mishra
13.1 Introduction
267(1)
13.2 Carbon Assimilation
268(3)
13.2.1 CO2 Assimilation in C3 Plants: Photorespiration a Major Constraint
268(1)
13.2.2 CO2 Assimilation in C4 Plants: Efficient Photosynthesis
269(2)
13.2.3 C3 vs. C4 Plants
271(1)
13.3 Evolution of C4 Metabolism in Higher Plants
271(2)
13.3.1 Environmental Imperatives/Obligations
272(1)
13.3.2 Evolution of C4 Photosynthesis Gene(s)
272(1)
13.4 Effect of Elevated CO2 on C3 and C4 Plants
273(1)
13.5 Ectopic Expression of C4 Photosynthesis Genes in C3 Plants
274(1)
13.5.1 Single Gene Introgression
274(1)
13.5.2 Double Gene Introgression
275(1)
13.6 Conclusion
275(1)
Acknowledgment
276(1)
References
276(7)
14 Interaction of Photosynthesis, Productivity, and Environment 283(32)
Ulduza Ahmad Gurbanova
Tofig Idris Allahverdiyev
Hasan Garib Babayev
Shahnigar Mikayil Bayramov
Irada Mammad Huseynova
14.1 Introduction
283(3)
14.2 Plant Materials
286(1)
14.3 Effect of Drought Stress on Some Physiological Traits, Yield, and Yield Components of Durum (Triticum durum Desf.) and Bread (Triticum aestivum L.) Wheat Genotypes
286(13)
14.4 Subcellular Localization of the NADP-Malic Enzyme and NAD-Malic Enzyme Activity in the Leaves of the Wheat Genotypes Under Soil Drought Conditions
299(3)
14.5 Physico-Chemical Parameters of NADP-Malic Enzyme and NAD-Malic Enzyme in the Leaves of the Barakatli 95 and Garagylchyg 2 Genotypes Under Soil Drought Conditions
302(8)
14.6 Conclusion
310(1)
Acknowledgement
311(1)
References
311(4)
Index 315
ABOUT THE EDITORS

PARVAIZ AHMAD, Department of Botany and Microbiology, King Saud University, Riyadh, Saudi Arabia, and Department of Botany, S. P. College, Srinagar, Jammu and Kashmir, India.

MOHAMMAD ABASS AHANGER, College of Life Science, NorthWest A & F University, Yangling Shaanxi, China.

MOHAMMED NASSER ALYEMENI, Department of Botany and Microbiology, King Saud University, Riyadh, Saudi Arabia.

PRAVEJ ALAM, Department of Biology, Prince Sattam bin Abdul Aziz University, Alkharaj, Riyadh, Saudi Arabia.