Preface |
|
xvii | |
Authors |
|
xix | |
|
Chapter 1 General Introduction |
|
|
1 | (40) |
|
1.1 Zero Energy Buildings |
|
|
1 | (1) |
|
1.2 The Sun and the Earth |
|
|
2 | (11) |
|
|
2 | (2) |
|
|
4 | (1) |
|
|
5 | (4) |
|
|
9 | (4) |
|
|
13 | (3) |
|
1.3.1 Climatic Conditions |
|
|
13 | (2) |
|
|
15 | (1) |
|
1.3.3 Macro-and Microclimate |
|
|
15 | (1) |
|
|
15 | (1) |
|
|
15 | (1) |
|
|
16 | (1) |
|
1.4.1 Strategies for Passive Design |
|
|
16 | (1) |
|
|
16 | (1) |
|
|
16 | (1) |
|
1.5 Architectural Design of Passive Buildings |
|
|
17 | (6) |
|
|
17 | (1) |
|
1.5.1.1 Building Location and Orientation |
|
|
17 | (1) |
|
1.5.1.2 Building Orientation |
|
|
18 | (1) |
|
|
18 | (1) |
|
1.5.2 Envelope Design or Building Envelope |
|
|
18 | (1) |
|
|
18 | (1) |
|
1.5.2.2 Entrances and Windows |
|
|
19 | (1) |
|
1.5.2.3 Solar Shading Techniques |
|
|
19 | (1) |
|
|
20 | (2) |
|
1.5.2.5 Infiltration Reduction |
|
|
22 | (1) |
|
|
22 | (1) |
|
|
23 | (3) |
|
|
23 | (2) |
|
1.6.2 Building Design Strategies Depending on Climatic Conditions |
|
|
25 | (1) |
|
|
26 | (2) |
|
|
26 | (1) |
|
|
26 | (1) |
|
|
26 | (2) |
|
1.8 Design Approach to ZEB |
|
|
28 | (6) |
|
|
28 | (1) |
|
|
29 | (2) |
|
|
31 | (1) |
|
|
32 | (2) |
|
1.9 Case Study of an Energy Neutral Building |
|
|
34 | (7) |
|
|
35 | (1) |
|
|
36 | (1) |
|
|
37 | (1) |
|
|
37 | (4) |
|
Chapter 2 Basic Heat Transfer |
|
|
41 | (44) |
|
|
41 | (1) |
|
|
41 | (5) |
|
|
42 | (1) |
|
2.2.2 Fourier's Heat Conduction Equation |
|
|
42 | (1) |
|
2.2.3 Thermal Conductivity |
|
|
43 | (1) |
|
2.2.4 Thermal Diffusivity |
|
|
43 | (1) |
|
2.2.5 Conductive Heat Transfer Coefficient |
|
|
44 | (1) |
|
2.2.6 Dimensionless Heat Conduction Parameters |
|
|
44 | (1) |
|
|
44 | (1) |
|
|
45 | (1) |
|
|
46 | (13) |
|
2.3.1 Dimensionless Heat Convection Parameters |
|
|
46 | (1) |
|
2.3.1.1 Nusselt Number (Nu) |
|
|
47 | (1) |
|
2.3.1.2 Reynolds Number (Re) |
|
|
47 | (1) |
|
2.3.1.3 Prandtl Number (Pr) |
|
|
47 | (1) |
|
2.3.1.4 Grashof Number (Gr) |
|
|
48 | (1) |
|
2.3.1.5 Rayleigh Number (Ra) |
|
|
48 | (8) |
|
2.3.2 Types of Convection |
|
|
56 | (1) |
|
|
56 | (1) |
|
2.3.2.2 Forced Convection |
|
|
56 | (3) |
|
2.3.2.3 Mixed-Mode Convection |
|
|
59 | (1) |
|
2.4 Convective Heat Transfer Coefficient |
|
|
59 | (1) |
|
|
60 | (6) |
|
2.5.1 Radiation Involving Real Surfaces |
|
|
60 | (1) |
|
|
61 | (1) |
|
2.5.3 Laws of Thermal Radiation |
|
|
61 | (1) |
|
|
61 | (1) |
|
2.5.3.2 Wien's Displacement Law |
|
|
62 | (1) |
|
2.5.3.3 Stefan-Boltzmann Law |
|
|
62 | (1) |
|
|
62 | (2) |
|
2.5.4 Radiative Heat Transfer Coefficient |
|
|
64 | (2) |
|
2.6 Evaporation (Mass Transfer) |
|
|
66 | (2) |
|
2.7 Total Heat Transfer Coefficient |
|
|
68 | (1) |
|
2.8 Overall Heat Transfer Coefficient |
|
|
69 | (4) |
|
|
70 | (1) |
|
2.8.2 Parallel Slabs with Air Cavity |
|
|
71 | (2) |
|
2.9 Thermal Circuit Analysis |
|
|
73 | (2) |
|
|
73 | (1) |
|
|
74 | (1) |
|
|
75 | (10) |
|
2.10.1 Energy Balance for Winter's Day |
|
|
75 | (1) |
|
2.10.2 Energy Balance on a Cloudy Day |
|
|
75 | (2) |
|
2.10.3 Energy Balance on a Summer's Day in an Air-Conditioned Building |
|
|
77 | (1) |
|
2.10.4 Energy Balance for Intermediate Season Like Spring and Autumn |
|
|
78 | (1) |
|
|
79 | (2) |
|
|
81 | (1) |
|
|
81 | (1) |
|
|
82 | (3) |
|
Chapter 3 Thermal Comfort |
|
|
85 | (26) |
|
|
85 | (1) |
|
|
86 | (9) |
|
|
86 | (1) |
|
|
86 | (1) |
|
|
87 | (1) |
|
3.2.4 Mean Radiant Temperature |
|
|
88 | (2) |
|
|
90 | (1) |
|
|
90 | (1) |
|
|
90 | (1) |
|
|
90 | (1) |
|
|
90 | (1) |
|
3.2.9.1 Windows and Fenestrations |
|
|
91 | (1) |
|
|
92 | (1) |
|
|
92 | (1) |
|
3.2.9.4 Semi-Transparent Solar Photovoltaic Lighting System (SSPLS) and Transparent Facades |
|
|
92 | (1) |
|
|
93 | (1) |
|
|
94 | (1) |
|
|
94 | (1) |
|
3.2.9.8 Smart Glass Windows |
|
|
94 | (1) |
|
3.2.9.9 Hybrid Solar Lighting (HSL) |
|
|
95 | (1) |
|
3.3 Physiological Aspects |
|
|
95 | (1) |
|
|
95 | (1) |
|
|
95 | (1) |
|
|
95 | (1) |
|
|
95 | (1) |
|
|
95 | (1) |
|
|
96 | (3) |
|
|
96 | (1) |
|
|
96 | (1) |
|
3.4.3 Adaptation and Acclimatization |
|
|
97 | (1) |
|
3.4.4 Time of the Day/Season |
|
|
98 | (1) |
|
|
98 | (1) |
|
3.4.6 Psychological Factors |
|
|
98 | (1) |
|
|
99 | (4) |
|
|
99 | (1) |
|
|
100 | (1) |
|
|
101 | (1) |
|
|
102 | (1) |
|
|
103 | (1) |
|
3.6 Thermal Comfort Indices |
|
|
103 | (3) |
|
3.6.1 Predicted Mean Vote (PMV) Index |
|
|
103 | (1) |
|
3.6.2 Predicted Percentage Dissatisfied (PPD) Index |
|
|
104 | (2) |
|
3.6.3 Adaptive Comfort Standard |
|
|
106 | (1) |
|
3.6.3.1 Field Studies and Rational Indices |
|
|
106 | (1) |
|
3.6.3.2 Rational Approach |
|
|
106 | (1) |
|
|
106 | (1) |
|
3.7 Building Performance Parameters |
|
|
106 | (1) |
|
3.7.1 Thermal Load Leveling (TLL) |
|
|
106 | (1) |
|
|
107 | (1) |
|
|
107 | (4) |
|
|
107 | (1) |
|
|
108 | (1) |
|
|
109 | (2) |
|
Chapter 4 Energy and Exergy Analysis |
|
|
111 | (28) |
|
|
111 | (1) |
|
4.1.1 Brief History of Thermodynamics |
|
|
111 | (1) |
|
4.2 Laws of Thermodynamics |
|
|
111 | (3) |
|
4.2.1 The Zeroth Law of Thermodynamics |
|
|
112 | (1) |
|
4.2.2 The First Law of Thermodynamics |
|
|
112 | (1) |
|
4.2.3 The Second Law of Thermodynamics |
|
|
112 | (2) |
|
4.2.4 The Third Law of Thermodynamics |
|
|
114 | (1) |
|
|
114 | (8) |
|
|
114 | (1) |
|
|
115 | (1) |
|
4.3.3 Embodied Energy Analysis |
|
|
115 | (1) |
|
4.3.4 Energy Density Analysis |
|
|
115 | (1) |
|
|
116 | (1) |
|
4.3.4.2 Input-Output Analysis |
|
|
116 | (1) |
|
|
116 | (1) |
|
4.3.5 An Overall Thermal Energy |
|
|
116 | (1) |
|
4.3.5.1 Energy Payback Time (EPBT) |
|
|
116 | (2) |
|
4.3.6 Energy Production Factor (EPF) |
|
|
118 | (1) |
|
4.3.7 Life Cycle Conversion Efficiency (LCCE) |
|
|
118 | (3) |
|
4.3.8 Energy Matrices of Photovoltaic (PV) Module |
|
|
121 | (1) |
|
|
122 | (8) |
|
4.4.1 Low-Grade and High-Grade Energy |
|
|
124 | (1) |
|
4.4.1.1 Exergy as a Process |
|
|
124 | (1) |
|
|
125 | (1) |
|
4.4.3 Solar Radiation Exergy |
|
|
126 | (1) |
|
4.4.3.1 Exergy Analysis Methods |
|
|
127 | (2) |
|
4.4.4 Exergy Analysis of Photovoltaic Thermal (PVT) Systems |
|
|
129 | (1) |
|
4.5 Case Study with Roof-Mounted BiPVT System |
|
|
130 | (9) |
|
|
130 | (1) |
|
4.5.2 Overall Embodied Energy, EPBT, EPF |
|
|
131 | (2) |
|
|
133 | (1) |
|
|
134 | (1) |
|
|
135 | (1) |
|
|
135 | (4) |
|
Chapter 5 Solar Cell Materials, PV Modules and Arrays |
|
|
139 | (22) |
|
|
139 | (1) |
|
5.2 Basics of Semiconductors and Solar Cells |
|
|
139 | (12) |
|
5.2.1 Intrinsic Semiconductor |
|
|
141 | (1) |
|
5.2.2 Non-Intrinsic Semiconductor |
|
|
142 | (1) |
|
5.2.3 Fermi Level in Semiconductor |
|
|
142 | (1) |
|
|
143 | (1) |
|
5.2.5 Photovoltaic Effect |
|
|
143 | (1) |
|
5.2.6 Solar Cell (Photovoltaic) Materials |
|
|
144 | (1) |
|
|
145 | (1) |
|
5.2.6.2 Single-Crystal Solar Cell |
|
|
145 | (2) |
|
5.2.7 Basic Parameters of Solar Cells |
|
|
147 | (4) |
|
5.3 Photovoltaic (PV) Modules and PV Arrays |
|
|
151 | (10) |
|
5.3.1 Single-Crystal Solar Cells PV Module |
|
|
151 | (1) |
|
5.3.2 Thin-Film PV Modules |
|
|
151 | (1) |
|
5.3.3 Packing Factor (βc) of PV Module |
|
|
152 | (1) |
|
5.3.4 Efficiency of PV Modules |
|
|
152 | (1) |
|
5.3.5 Energy Balance Equations for PV Modules |
|
|
153 | (1) |
|
5.3.5.1 For Opaque (Glass to Tedlar) PV Modules |
|
|
153 | (1) |
|
5.3.5.2 For Semi-Transparent (Glass-to-Glass) PV Modules |
|
|
154 | (2) |
|
5.3.6 Series and Parallel Combination of PV Modules |
|
|
156 | (1) |
|
5.3.7 Degradation of Solar Cell Materials |
|
|
156 | (1) |
|
|
156 | (1) |
|
|
156 | (1) |
|
|
157 | (1) |
|
|
158 | (1) |
|
|
159 | (2) |
|
Chapter 6 Static Design Concept for a Light-Structured Building for Cold Climatic Conditions |
|
|
161 | (22) |
|
|
161 | (1) |
|
|
161 | (3) |
|
|
161 | (2) |
|
|
163 | (1) |
|
6.2.3 Blackened and Glazed Surface |
|
|
163 | (1) |
|
|
164 | (19) |
|
|
164 | (1) |
|
6.3.1.1 Direct Gain through Semi-Transparent Photovoltaic (SPV) System |
|
|
165 | (2) |
|
6.3.1.2 Direct Gain through Glazed Windows |
|
|
167 | (1) |
|
6.3.1.3 Net Thermal Energy Gains |
|
|
168 | (2) |
|
|
170 | (1) |
|
6.3.2.1 Thermal Storage Wall/Roofs |
|
|
171 | (1) |
|
|
171 | (3) |
|
|
174 | (1) |
|
|
174 | (1) |
|
|
174 | (1) |
|
|
175 | (1) |
|
6.3.4 Direct and Indirect Gain through Photovoltaic Thermal (PVT) Systems Integrated with Building |
|
|
176 | (1) |
|
6.3.4.1 Semi-Transparent Photovoltaic (SPV) Roof Integrated with Building's Rooftop |
|
|
176 | (1) |
|
6.3.4.2 Photovoltaic Thermal (PVT) Trombe Walls |
|
|
177 | (1) |
|
6.3.4.3 Integration of Roof (with Vent) with Semi-Transparent Photovoltaic Modules |
|
|
177 | (2) |
|
6.3.4.4 Integration of Roof with Opaque Photovoltaic Modules |
|
|
179 | (1) |
|
|
180 | (1) |
|
|
180 | (1) |
|
|
181 | (1) |
|
|
181 | (2) |
|
Chapter 7 Dynamic Design Concepts for Hot Climatic Conditions |
|
|
183 | (36) |
|
|
183 | (1) |
|
7.2 Phase Change Materials (PCMs) |
|
|
183 | (1) |
|
7.3 Infiltration/Natural Ventilation |
|
|
184 | (5) |
|
|
186 | (1) |
|
7.3.2 Literature Study: Infiltration/Natural Ventilation |
|
|
186 | (1) |
|
|
186 | (1) |
|
|
187 | (1) |
|
7.3.4.1 Self-Inflating Curtains |
|
|
187 | (1) |
|
7.3.4.2 Window Quilt Shade |
|
|
187 | (1) |
|
7.3.4.3 Venetian Blind between the Glasses |
|
|
188 | (1) |
|
7.3.4.4 Transparent Heat Mirrors |
|
|
188 | (1) |
|
7.3.4.5 Solar Shading Devices |
|
|
188 | (1) |
|
|
188 | (1) |
|
|
188 | (1) |
|
|
188 | (1) |
|
|
188 | (1) |
|
7.3.5.3 Shading by Textured Surface |
|
|
189 | (1) |
|
7.3.5.4 Trees and Vegetation |
|
|
189 | (1) |
|
7.4 Literature Study: Shading |
|
|
189 | (1) |
|
7.5 Thermotropic and Thermochromic Coatings |
|
|
190 | (1) |
|
|
190 | (1) |
|
|
191 | (1) |
|
7.7.1 Literature Study: Air Cavity |
|
|
191 | (1) |
|
7.8 Green Roofs/Cool Roofs |
|
|
192 | (3) |
|
7.8.1 Literature Study: Cool Roof |
|
|
193 | (1) |
|
7.8.2 Evaporative Cooling |
|
|
193 | (2) |
|
7.8.3 Literature Study: Evaporative Cooling |
|
|
195 | (1) |
|
|
195 | (2) |
|
7.9.1 Literature Study: Radiative Cooling |
|
|
196 | (1) |
|
|
197 | (1) |
|
7.11 Dynamic Insulation Walls |
|
|
197 | (1) |
|
7.11.1 Exterior Insulation |
|
|
197 | (1) |
|
7.11.2 Interior Insulation |
|
|
197 | (1) |
|
|
197 | (1) |
|
7.12.1 Literature Study: Wind Towers |
|
|
198 | (1) |
|
|
198 | (1) |
|
7.14 Rock Bed Regenerative Cooler |
|
|
199 | (1) |
|
|
199 | (4) |
|
7.15.1 Earth-Air Heat Exchanger (EAHE) |
|
|
199 | (3) |
|
7.15.1.1 Literature Study: EAHE |
|
|
202 | (1) |
|
|
203 | (2) |
|
7.16.1 Literature Study: Roof Pond-Passive Cooling |
|
|
203 | (1) |
|
|
204 | (1) |
|
7.17 Different Compositions of Trombe Wall |
|
|
205 | (6) |
|
7.17.1 Vented Trombe Wall |
|
|
205 | (1) |
|
7.17.2 Phase Change Material (PCM) Trombe Wall |
|
|
205 | (2) |
|
7.17.3 Photovoltaic Integrated Phase Change Materials (PV-PCM)Wall |
|
|
207 | (1) |
|
7.17.4 Heat Transfer in Trombe Walls |
|
|
207 | (1) |
|
|
207 | (2) |
|
7.17.4.2 Rate of Heat Transfer |
|
|
209 | (1) |
|
7.17.5 Efficiency Analysis of Trombe Wall |
|
|
209 | (1) |
|
|
209 | (1) |
|
|
209 | (1) |
|
|
210 | (1) |
|
7.17.5.4 Material and Color |
|
|
210 | (1) |
|
|
210 | (1) |
|
|
211 | (8) |
|
7.18.1 Solar Photovoltaic Cooling |
|
|
211 | (1) |
|
|
211 | (1) |
|
|
212 | (1) |
|
|
213 | (1) |
|
|
213 | (6) |
|
Chapter 8 Building Integrated Photovoltaic Thermal System (BiPVT) |
|
|
219 | (40) |
|
|
219 | (1) |
|
8.2 Literature Review of BiPV/BiPVT Systems |
|
|
220 | (1) |
|
8.3 Types of PV Integrations with Buildings |
|
|
220 | (3) |
|
|
220 | (1) |
|
|
221 | (1) |
|
|
221 | (2) |
|
8.4 Building Integrated Opaque Photovoltaic Systems (BiOPV) |
|
|
223 | (2) |
|
8.4.1 Opaque Photovoltaic System Integrated with Rooftop |
|
|
223 | (1) |
|
8.4.2 Opaque Photovoltaic System Integrated with Facade |
|
|
224 | (1) |
|
8.5 Building Integrated Semi-Transparent Photovoltaic (BiSPVT) System |
|
|
225 | (2) |
|
8.5.1 Semi-Transparent Photovoltaic System Integrated with Rooftop |
|
|
225 | (1) |
|
8.5.2 Facade-Building Integrated Semi-Transparent Photovoltaic (BiSPVT) System |
|
|
226 | (1) |
|
8.6 BiOPVT and BiSPVT System on Rooftop and Facade |
|
|
227 | (1) |
|
8.7 Use of PV Modules in an Urban Settings |
|
|
227 | (1) |
|
8.8 Energy and Exergy Analysis of BiSPVT System |
|
|
228 | (13) |
|
|
229 | (1) |
|
|
229 | (1) |
|
8.8.3 Basic Energy Balance Equations |
|
|
230 | (7) |
|
8.8.4 Comparative Statement of Proposed Cases (a--d) |
|
|
237 | (4) |
|
8.9 Performance Evaluation of the Proposed Systems |
|
|
241 | (5) |
|
8.9.1 For BiSPVT System (Case a) |
|
|
241 | (1) |
|
8.9.2 For BiSPVT System with Water Flow (Case b) |
|
|
241 | (1) |
|
8.9.3 For BiSPVT System with Heat Capacity (Case c) |
|
|
241 | (2) |
|
8.9.4 For BiSPVT System with Heat Capacity and Water Flow (Case d) |
|
|
243 | (1) |
|
8.9.5 BiSPVT System Heat Capacity with Movable Insulation and South-Facing Window (Case e) |
|
|
243 | (3) |
|
8.10 Input Variables of BiSPVT System: Case Studies |
|
|
246 | (3) |
|
8.10.1 Number of Air Changes |
|
|
246 | (2) |
|
8.10.2 Velocity of the System |
|
|
248 | (1) |
|
|
248 | (1) |
|
|
248 | (1) |
|
8.10.5 Transmissivity of Glass |
|
|
248 | (1) |
|
|
248 | (1) |
|
|
249 | (1) |
|
8.11 BiSPVT System Based on the PV Cell Type |
|
|
249 | (10) |
|
|
249 | (1) |
|
8.11.2 Performance of BiSPVT System Based on PV Types: A Case Study |
|
|
250 | (2) |
|
|
252 | (1) |
|
|
253 | (1) |
|
|
254 | (5) |
|
Chapter 9 Environmental Aspects |
|
|
259 | (24) |
|
|
259 | (1) |
|
9.2 Life Cycle Assessment |
|
|
259 | (2) |
|
9.2.1 Basic Definitions of Life Cycle Assessment |
|
|
261 | (1) |
|
9.2.2 The Main Stages of Life Cycle Assessment |
|
|
261 | (1) |
|
|
261 | (7) |
|
9.3.1 Embodied Energy of Different Materials |
|
|
262 | (1) |
|
9.3.2 Embodied Energy of Different Construction Materials |
|
|
262 | (1) |
|
9.3.3 Embodied Energy in Floor/Roofing Systems |
|
|
263 | (1) |
|
9.3.4 Embodied Energy in Transportation of Building Materials |
|
|
264 | (1) |
|
9.3.5 Embodied Energy of PV Module |
|
|
264 | (2) |
|
9.3.5.1 Energy for Non-Silicon PV Modules |
|
|
266 | (1) |
|
9.3.5.2 Energy for Balance of System (BOS) |
|
|
266 | (1) |
|
9.3.6 Embodied Energy and Annual Output of Renewable Energy Technologies |
|
|
267 | (1) |
|
9.3.7 Guidelines for Reducing Embodied Energy |
|
|
267 | (1) |
|
9.4 Modeling of Embodied Energy for BiPVT Systems |
|
|
268 | (2) |
|
|
268 | (1) |
|
9.4.2 Photovoltaic Thermal (PVT) System |
|
|
268 | (1) |
|
9.4.3 Balance of System (BOS) |
|
|
269 | (1) |
|
|
270 | (1) |
|
9.5.1 Example of Estimation of Embodied Carbon Dioxide for Concret |
|
|
270 | (1) |
|
9.6 Carbon Dioxide Emissions |
|
|
271 | (3) |
|
9.7 Earned Carbon Credits and Carbon Dioxide Mitigation |
|
|
274 | (2) |
|
|
275 | (1) |
|
9.8 Case Study with the BiPVT System |
|
|
276 | (1) |
|
9.9 Kyoto Protocol and the United Nations Framework Convention on Climate Change |
|
|
276 | (2) |
|
9.9.1 The Protocol and the Green Growth |
|
|
278 | (1) |
|
9.10 Carbon Dioxide Mitigation with Use of Photovoltaics |
|
|
278 | (5) |
|
|
279 | (1) |
|
|
280 | (1) |
|
|
280 | (3) |
|
Chapter 10 Life Cycle Analysis |
|
|
283 | (68) |
|
|
283 | (1) |
|
|
284 | (1) |
|
|
285 | (23) |
|
10.3.1 Capital Recovery Factor |
|
|
285 | (12) |
|
10.3.2 Uniform Annual Cost |
|
|
297 | (2) |
|
10.3.3 Sinking Fund Factor |
|
|
299 | (5) |
|
10.3.4 Linear Gradient Series Present Value Factor |
|
|
304 | (2) |
|
10.3.5 Gradient to Equal Payment Series Conversion Factor |
|
|
306 | (1) |
|
10.3.6 Linear Gradient Series Future Value Factor |
|
|
307 | (1) |
|
|
308 | (1) |
|
10.5 Cost Comparisons with Equal Duration |
|
|
309 | (2) |
|
10.6 Net Present Value (NPV) |
|
|
311 | (1) |
|
10.6.1 Limitations of the NPV Method |
|
|
312 | (1) |
|
10.7 Cost Comparisons with Unequal Duration |
|
|
312 | (4) |
|
10.7.1 Single Present Value Method (Method I) |
|
|
313 | (1) |
|
10.7.2 Annual Cost Method (Method II) |
|
|
314 | (1) |
|
10.7.3 Capitalized Cost Method (Method III) |
|
|
315 | (1) |
|
|
315 | (1) |
|
|
316 | (4) |
|
10.8.1 Analytical Expression for Payback Time |
|
|
316 | (2) |
|
10.8.2 Payback Period without Interest |
|
|
318 | (1) |
|
10.8.3 Payback Period with Interest |
|
|
318 | (2) |
|
10.9 Benefit--Cost Analysis |
|
|
320 | (7) |
|
10.9.1 Types of Benefit--Cost Analysis |
|
|
322 | (1) |
|
10.9.1.1 Aggregate B/C Ratio |
|
|
322 | (1) |
|
|
322 | (1) |
|
10.9.2 Advantages and Disadvantages of B/C Ratio |
|
|
323 | (4) |
|
10.10 Internal Rate of Return |
|
|
327 | (5) |
|
10.10.1 Iterative Method to Compute IRR |
|
|
328 | (3) |
|
10.10.2 Multiple Values of IRR |
|
|
331 | (1) |
|
10.11 Effect of Depreciation |
|
|
332 | (6) |
|
10.11.1 Expression for Book Value |
|
|
334 | (1) |
|
10.11.2 Straight-Line Depreciation |
|
|
334 | (1) |
|
10.11.3 Sinking Fund Depreciation |
|
|
335 | (1) |
|
10.11.4 Accelerated Depreciation |
|
|
336 | (2) |
|
10.12 Cost Comparison after Taxes |
|
|
338 | (4) |
|
10.12.1 Without Depreciation |
|
|
338 | (1) |
|
10.12.2 With Depreciation |
|
|
339 | (3) |
|
10.13 Estimating Cost of a Project |
|
|
342 | (1) |
|
|
342 | (1) |
|
|
342 | (1) |
|
10.13.3 Step-Variable Cost |
|
|
342 | (1) |
|
|
342 | (1) |
|
10.14 A Case Study of Building Integrated Photovoltaic Thermal (BiPVT) Systems |
|
|
343 | (8) |
|
|
343 | (1) |
|
10.14.2 Modeling of Annualized Uniform Cost |
|
|
344 | (1) |
|
|
344 | (1) |
|
10.14.4 Results and Discussions |
|
|
345 | (2) |
|
|
347 | (2) |
|
|
349 | (1) |
|
|
349 | (1) |
|
|
350 | (1) |
|
Chapter 11 Photovoltaic Application in Architecture |
|
|
351 | (34) |
|
|
351 | (1) |
|
11.2 Implementation of PV Systems around the World |
|
|
351 | (15) |
|
|
352 | (3) |
|
11.2.2 United States of America |
|
|
355 | (2) |
|
|
357 | (3) |
|
|
360 | (3) |
|
|
363 | (1) |
|
|
364 | (2) |
|
11.3 Case Study: BiSPVT System Installed at Sodha Bers Complex, Varanasi, India |
|
|
366 | (19) |
|
11.3.1 Introduction and Planning |
|
|
367 | (1) |
|
|
367 | (2) |
|
|
369 | (1) |
|
11.3.1.3 First and Second Floor |
|
|
369 | (1) |
|
11.3.1.4 Terrace Floor Integrated with Semi-Transparent Photovoltaic (SPV) System |
|
|
370 | (1) |
|
|
370 | (1) |
|
11.3.3 Construction Details and Materials Used |
|
|
371 | (1) |
|
11.3.4 Thermal Heat Gains |
|
|
372 | (3) |
|
11.3.5 Electrical Power (Ep) |
|
|
375 | (1) |
|
11.3.6 Daylight Energy Savings |
|
|
375 | (1) |
|
11.3.7 Total Energy Savings |
|
|
376 | (1) |
|
|
376 | (1) |
|
11.3.9 Energy Payback Time (EPBT) |
|
|
377 | (1) |
|
11.3.10 Energy Production Factor (EPF) |
|
|
378 | (1) |
|
11.3.11 Life Cycle Conversion Efficiency |
|
|
378 | (1) |
|
11.3.12 Carbon Dioxide Emission |
|
|
379 | (1) |
|
11.3.13 Net Carbon Dioxide Mitigation |
|
|
379 | (1) |
|
11.3.14 Earned Carbon Credits |
|
|
380 | (1) |
|
|
381 | (1) |
|
|
381 | (1) |
|
|
381 | (4) |
Appendix A |
|
385 | (6) |
Appendix B |
|
391 | (2) |
Appendix C |
|
393 | (12) |
Appendix D |
|
405 | (2) |
Appendix E |
|
407 | (12) |
Appendix F |
|
419 | (4) |
Appendix G |
|
423 | (4) |
Index |
|
427 | |