Atnaujinkite slapukų nuostatas

Physics of the Atmosphere [Kietas viršelis]

  • Formatas: Hardback, 131 pages, aukštis x plotis x storis: 254x178x10 mm, With figures in colour and in black and white
  • Serija: IOP Expanding Physics
  • Išleidimo metai: 28-Nov-2014
  • Leidėjas: Institute of Physics Publishing
  • ISBN-10: 0750310537
  • ISBN-13: 9780750310536
Kitos knygos pagal šią temą:
  • Formatas: Hardback, 131 pages, aukštis x plotis x storis: 254x178x10 mm, With figures in colour and in black and white
  • Serija: IOP Expanding Physics
  • Išleidimo metai: 28-Nov-2014
  • Leidėjas: Institute of Physics Publishing
  • ISBN-10: 0750310537
  • ISBN-13: 9780750310536
Kitos knygos pagal šią temą:
Preface ix
Author biography x
1 Introduction
1(1)
1.1 Composition of the atmosphere
1(1)
1.2 Observed vertical structure
2
2 Thermodynamics of dry air
1(1)
2.1 Pressure, temperature and the ideal gas law
1(6)
2.1.1 A simple derivation of the ideal gas law
1(3)
2.1.2 Momentum flux and the pressure gradient force
4(1)
2.1.3 The Maxwell--Boltzmann distribution
5(2)
2.2 Hydrostatic balance
7(6)
2.2.1 The momentum budget of a stationary layer of air subject to gravity
7(1)
2.2.2 The hydrostatic approximation
8(2)
2.2.3 Surface pressure and the mass of the atmosphere
10(1)
2.2.4 Scale height
11(1)
2.2.5 Layer thickness and the hypsometric equation
11(1)
2.2.6 Surface pressure and sea level pressure
12(1)
2.3 Atmospheric energy and the first law of thermodynamics
13(7)
2.3.1 Energy of a point mass in Earth's gravitational field
13(1)
2.3.2 Molecular interpretation of the scale height
14(1)
2.3.3 Escape velocity and why we don't lose our atmosphere
14(1)
2.3.4 The energy of two point masses joined by a spring
15(1)
2.3.5 External and internal energy
15(1)
2.3.6 Heat capacity
16(2)
2.3.7 Heating, working and the first law of thermodynamics
18(1)
2.3.8 Heat capacity at constant pressure, enthalpy
19(1)
2.4 Entropy and the second law of thermodynamics
20(7)
2.4.1 Definition of entropy
20(1)
2.4.2 The second law of thermodynamics
20(2)
2.4.3 Thermodynamic equilibrium and heat conduction
22(1)
2.4.4 The Carnot engine
23(2)
2.4.5 Potential temperature
25(1)
2.4.6 The dry adiabat
26(1)
2.4.7 Does an adiabatically lifted parcel follow the dry adiabat?
26(1)
2.5 Static stability
27
2.5.1 The concept of static stability
27(1)
2.5.2 Buoyancy and the Brunt--Vaisala frequency
28(4)
2.5.3 The hydrostatic approximation, continued
32(1)
2.5.4 Convective available PE
32(1)
Bibliography
33
3 Thermodynamics of moist air
1(1)
3.1 Thermodynamics of moist non-condensing air
1(5)
3.1.1 The ideal gas law for a mixture of gases: partial pressures
1(1)
3.1.2 Six names for moisture
2(1)
3.1.3 Potential temperature of moist non-condensing air
3(1)
3.1.4 Virtual temperature
4(1)
3.1.5 Static stability of moist non-condensing air
5(1)
3.2 Condensation and evaporation
6(8)
3.2.1 Inter-molecular forces
6(1)
3.2.2 Saturation vapour pressure
6(1)
3.2.3 Relative humidity and dew-point temperature
7(1)
3.2.4 Latent heat of vapourization
8(1)
3.2.5 Wet-bulb temperature
9(1)
3.2.6 The Clausius--Clapeyron equation
10(2)
3.2.7 Scale height of water vapour
12(1)
3.2.8 Level of cloud formation: the lifting condensation level
13(1)
3.3 The moist adiabat
14(6)
3.3.1 Moist entropy
14(3)
3.3.2 Moist adiabatic lapse rate
17(1)
3.3.3 Moist adiabats and pseudoadiabats
18(1)
3.3.4 Visualizing the connection between the various meteorological temperatures
19(1)
3.4 Static stability of a moist atmosphere with condensation
20(7)
3.4.1 Conditional instability
20(2)
3.4.2 Skew-T and tephigram charts
22(2)
3.4.3 CAPE and convective inhibition energy
24(1)
3.4.4 Stability indices and thunderstorm forecasting
25(1)
3.4.5 Relation between e, es and stability
26(1)
3.5 Mixing clouds and contrails
27
Bibliography
29
4 Cloud microphysics
1(1)
4.1 Homogeneous nucleation
1(2)
4.1.1 Kelvin's equation
2(1)
4.2 Heterogeneous nucleation and aerosols
3(3)
4.2.1 Raoult's law
4(1)
4.2.2 Kohler diagrams
5(1)
4.3 Droplet growth by condensation
6(7)
4.3.1 Growth of an isolated droplet
7(3)
4.3.2 Growth of a population of droplets
10(3)
4.4 From cloud droplets to precipitation
13
4.4.1 The bottleneck
13(1)
4.4.2 Precipitation in cold clouds
14(2)
4.4.3 Precipitation in warm clouds
16(1)
Bibliography
16
5 Atmospheric radiation
1(1)
5.1 Electromagnetic radiation
1(1)
5.1.1 Waves
1(1)
5.1.2 Photons
2(1)
5.2 Interaction between radiation and matter: some generalities
2(1)
5.3 Molecular absorption
3(4)
5.3.1 Rotation
3(2)
5.3.2 Vibration
5(1)
5.3.3 Roto-vibrational transitions
5(1)
5.3.4 Line broadening
5(2)
5.4 Scattering
7(4)
5.4.1 Rayleigh scattering
8(1)
5.4.2 Mie scattering
9(1)
5.4.3 Geometric optics
10(1)
5.5 Absorption by cloud drops
11(1)
5.6 Radiative transfer: generalities
11(8)
5.6.1 Energy flux in a gas of photons
11(2)
5.6.2 Black body radiation
13(1)
5.6.3 Extinction and optical thickness
14(1)
5.6.4 Transmissivity and absorptivity
15(1)
5.6.5 Emissivity and Kirchhoff's law
16(1)
5.6.6 Equivalent width and line saturation
16(3)
5.6.7 The Schwarzschild equation
19(1)
5.7 Radiative transfer of longwave radiation
19(6)
5.7.1 Plane parallel approximation
20(1)
5.7.2 Two-stream approximation
21(1)
5.7.3 Effective emission level
22(2)
5.7.4 The greenhouse effect
24(1)
5.8 Absorption and emission spectra of Earth's atmosphere
25(4)
5.8.1 Absorption spectrum
25(2)
5.8.2 Absorption of solar radiation
27(1)
5.8.3 Emission spectrum
27(2)
5.9 Some scattering effects
29
5.9.1 Radiative transfer in clouds
29(4)
5.9.2 Rain radar
33(2)
Bibliography
35
6 The atmospheric boundary layer
1
6.1 Scale separation and Reynolds averaging
1(1)
6.2 Closure, mixing length and flux-gradient relations
2(1)
6.3 The Ekman layer
3(2)
6.4 The surface layer
5(1)
6.5 Static stability and the Monin--Obukhov similarity
5