Atnaujinkite slapukų nuostatas

El. knyga: Physics for Diagnostic Radiology

(Aberdeen Radiation Protection Services, UK), (Addenbrookes NHS Trust, Cambridge, UK)
Kitos knygos pagal šią temą:
Kitos knygos pagal šią temą:

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

With every chapter revised and updated, Physics for Diagnostic Radiology, Third Edition continues to emphasise the importance of physics education as a critical component of radiology training. This bestselling text helps readers understand how various imaging techniques work, from planar analogue and digital radiology to computed tomography (CT), nuclear medicine, and positron emission tomography (PET) to ultrasound imaging and magnetic resonance imaging (MRI).

New to the Third Edition











Material on digital receptors Emphasis on the differences between analogue and digital images Coverage of multi-slice CT and three-dimensional resolution, dual energy applications, and cone beam CT Special radiographic techniques, including subtraction techniques and interventional radiology New chapter on PET, with discussion of multi-modality imaging (PET/CT) Additional material on radiation doses and risks to patients New chapter covering picture archiving and communication system (PACS), teleradiology, networks, archiving, and related factors A summary of the main teaching points at the beginning of each chapter

After an introductory chapter on basic physics, the book follows the x-ray imaging process: production of x-rays, interaction with the patient, radiation measurement, the image receptor, the radiological image, and image quality assessment. It then covers more advanced x-ray techniques as well as imaging with radioactive materials. The text also focuses on radiobiology, risk and radiation protection, and imaging with non-ionising radiation. The final chapter discusses data handling in a modern, electronic radiology department.

Recenzijos

" the book presents comprehensive and up-to-date information even beyond what might be expected from the title of the book. It contains the medical physics of all imaging modalities available at a larger department of radiology." Hans Zoetelief, Radiation Protection Dosimetry, Vol. 154, 2013

"This is the third edition of a well-established and popular textbook on physics of diagnostic radiology. It is a textbook written in a clear and concise style, supported by excellent illustrations. The textbook describes recent state-of-the-art advances in medical imaging in a way radiologists, radiographers and medical physicists will find easy to understand. It is internationally recognised as one of the key textbooks in its field." Dr. Keith Faulkner, North East Strategic Health Authority, UK

Praise for the Second Edition"One of the most useful features is the amount of review material. A series of discussion questions are given at the end of each chapter and six to fourteen multiple-choice questions per chapter are listed in an appendix, with an answer key for all questions and explanatory footnotes for some On the whole, I found the material to be authoritative, comprehensive, and accurate." Doody Online Reviews

"The book is well written and I recommend it not only to radiologists in training, but also to experienced radiologists and x-ray technicians who would like to update their knowledge in the physics of diagnostic radiology." Lars Jangland

About the Series vii
Acknowledgements ix
Introduction to the Third Edition xi
Contributors xv
1 Fundamentals of Radiation Physics and Radioactivity
1(22)
P P Dendy
B Heaton
1.1 Structure of the Atom
2(2)
1.2 Nuclear Stability and Instability
4(2)
1.3 Radioactive Concentration and Specific Activity
6(1)
1.3.1 Radioactive Concentration
6(1)
1.3.2 Specific Activity
7(1)
1.4 Radioactive Decay Processes
7(1)
1.4.1 β-Decay
7(1)
1.4.2 β+Decay
7(1)
1.4.3 α Decay
8(1)
1.5 Exponential Decay
8(1)
1.6 Half-life
9(2)
1.7 Secular and Transient Equilibrium
11(2)
1.8 Biological and Effective Half-Life
13(1)
1.9 Gamma Radiation
14(1)
1.10 X-rays and Gamma Rays as Forms of Electromagnetic Radiation
14(2)
1.11 Quantum Properties of Radiation
16(1)
1.12 Inverse Square Law
17(1)
1.13 Interaction of Radiation with Matter
17(2)
1.14 Linear Energy Transfer
19(1)
1.15 Energy Changes in Radiological Physics
19(2)
1.16 Conclusion
21(1)
Further Reading
21(1)
Exercises
21(2)
2 Production of X-Rays
23(52)
P P Dendy
B Heaton
2.1 Introduction
25(1)
2.2 The X-ray Spectrum
26(7)
2.2.1 The Continuous Spectrum
27(1)
2.2.2 The Low and High Energy Cut-Off
27(1)
2.2.3 Shape of the Continuous Spectrum
28(2)
2.2.4 Line or Characteristic Spectra
30(1)
2.2.5 Factors Affecting the X-ray Spectrum
31(1)
2.2.5.1 Tube Current, IT
31(1)
2.2.5.2 Time of Exposure
31(1)
2.2.5.3 Applied Voltage
31(1)
2.2.5.4 Waveform of Applied Voltage
32(1)
2.2.5.5 Filtration
33(1)
2.2.5.6 Anode Material
33(1)
2.3 Components of the X-ray Tube
33(15)
2.3.1 The Cathode
33(1)
2.3.2 The Anode Material
34(1)
2.3.3 Anode Design
35(1)
2.3.3.1 Stationary Anode
36(1)
2.3.3.2 Rotating Anode
36(2)
2.3.3.3 Rotating Envelope
38(1)
2.3.4 Electrical Circuits
39(1)
2.3.4.1 The Transformer
39(1)
2.3.4.2 Generating Different Voltage Wave Forms
40(1)
2.3.4.3 Medium and High Frequency Generators
41(1)
2.3.4.4 Action of Smoothing Capacitors
42(1)
2.3.4.5 Tube Kilovoltage and Tube Current Meters
42(1)
2.3.5 The Tube Envelope and Housing
43(1)
2.3.5.1 The Envelope
43(1)
2.3.5.2 The Tube Housing
44(1)
2.3.6 Switching and Timing Mechanisms
44(1)
2.3.6.1 Primary Switches
44(1)
2.3.6.2 Timing Mechanisms
45(1)
2.3.6.3 The Electronic Timer
45(1)
2.3.6.4 Frequency or Pulse Counting Timers
46(1)
2.3.6.5 The Photo Timer
46(1)
2.3.7 Electrical Safety Features
47(1)
2.3.7.1 The Tube Housing
47(1)
2.3.7.2 High Tension Cables
47(1)
2.3.7.3 Electrical Circuits
48(1)
2.4 Spatial Distribution of X-rays
48(5)
2.5 Rating of an X-ray Tube
53(11)
2.5.1 Introduction
53(1)
2.5.2 Electrical Rating
53(1)
2.5.2.1 Maximum Voltage
53(1)
2.5.2.2 Maximum Tube Current
53(1)
2.5.2.3 Generator Power
54(1)
2.5.3 Thermal Rating---Considerations at Short Exposures
55(1)
2.5.3.1 Effect of Cooling
55(1)
2.5.3.2 Target Spot Size
55(1)
2.5.3.3 Anode Design
56(1)
2.5.3.4 Tube Kilovoltage
57(2)
2.5.4 Overcoming Short Exposure Rating Limits
59(1)
2.5.5 Multiple or Prolonged Exposures
60(3)
2.5.6 Falling Load Generators
63(1)
2.5.7 Safety Interlocks
63(1)
2.5.8 X-ray Tube Lifetime
64(1)
2.6 Mobile X-ray Generators
64(3)
2.6.1 Battery Powered Generators
64(1)
2.6.2 Capacitor Discharge Units
65(2)
2.7 Quality Assurance of Performance for Standard X-ray Sets
67(4)
2.8 Conclusions
71(1)
References
72(1)
Further Reading
72(1)
Exercises
73(2)
3 Interaction of X-Rays and Gamma Rays with Matter
75(30)
B Heaton
P P Dendy
3.1 Introduction
76(1)
3.2 Experimental Approach to Beam Attenuation
76(3)
3.3 Introduction to the Interaction Processes
79(1)
3.3.1 Bound and Free Electrons
79(1)
3.3.2 Attenuation, Scatter and Absorption
80(1)
3.4 The Interaction Processes
80(9)
3.4.1 Elastic Scattering
81(1)
3.4.2 Photoelectric Effect
81(1)
3.4.3 The Compton Effect
82(3)
3.4.3.1 Direction of Scatter
85(2)
3.4.3.2 Variation of the Compton Coefficient with Photon Energy and Atomic Number
87(1)
3.4.4 Pair Production
88(1)
3.5 Combining Interaction Effects and Their Relative Importance
89(2)
3.6 Broad Beam and Narrow Beam Attenuation
91(3)
3.7 Consequences of Interaction Processes when Imaging Patients
94(1)
3.8 Absorption Edges
94(2)
3.9 Filtration and Beam Hardening
96(4)
3.10 Conclusions
100(1)
References
101(1)
Further Reading
102(1)
Exercises
102(3)
4 Radiation Measurement
105(28)
B Heaton
P P Dendy
4.1 Introduction
106(1)
4.2 Ionisation in Air as the Primary Radiation Standard
107(1)
4.3 The Ionisation Chamber
108(3)
4.4 The Geiger-Muller Counter
111(3)
4.4.1 The Geiger-Muller Tube
112(1)
4.4.2 Comparison of Ionisation Chambers and Geiger-Muller Counters
113(1)
4.4.2.1 Type of Radiation
113(1)
4.4.2.2 Sensitivity
113(1)
4.4.2.3 Nature of Reading
113(1)
4.4.2.4 Size
114(1)
4.4.2.5 Robustness and Simplicity
114(1)
4.5 Relationship between Exposure and Absorbed Dose
114(3)
4.6 Practical Radiation Monitors
117(3)
4.6.1 Secondary Ionisation Chambers
117(2)
4.6.2 Dose Area Product Meters
119(1)
4.6.3 Pocket Exposure Meters for Personnel Monitoring
119(1)
4.7 Semi-conductor Detectors
120(4)
4.7.1 Band Structure of Solids
120(1)
4.7.2 Mode of Operation
121(2)
4.7.3 Uses of the Silicon Diode
123(1)
4.8 Scintillation Detectors and Photomultiplier Tubes
124(2)
4.9 Spectral Distribution of Radiation
126(2)
4.10 Variation of Detector Sensitivity with Photon Energy
128(1)
4.11 Conclusions
129(1)
Further Reading
130(1)
Exercises
130(3)
5 The Image Receptor
133(48)
O W E Morrish
P P Dendy
5.1 Introduction
134(1)
5.2 Analogue and Digital Images
135(3)
5.3 Fluorescence, Phosphorescence, Photostimulation and Thermoluminescence
138(1)
5.4 Phosphors and Photoluminescent Screens
139(5)
5.4.1 Properties of Phosphors
139(4)
5.4.2 Production of Photoluminescent Screens
143(1)
5.4.3 Film-Phosphor Combinations in Radiography
144(1)
5.5 X-ray Film
144(5)
5.5.1 Film Construction
144(1)
5.5.2 Characteristic Curve and Optical Density
145(2)
5.5.3 Film Gamma and Film Speed
147(2)
5.5.4 Latitude
149(1)
5.6 Film Used with a Photoluminescent Screen
149(3)
5.7 Reciprocity
152(1)
5.8 Film-Screen Unsharpness
152(1)
5.9 Introduction to Digital Receptors and Associated Hardware
153(1)
5.9.1 Analogue to Digital Converters (ADCs)
153(1)
5.9.2 Pixellating the Image
154(1)
5.10 Digital Radiography (DR)
154(4)
5.11 Photostimulable Phosphors---Computed Radiography (CR)
158(3)
5.11.1 The Phosphor Screen
158(1)
5.11.2 Read Out Process
158(2)
5.11.3 Properties
160(1)
5.12 Film Digitisation
161(1)
5.13 Receptors Used in Fluoroscopy
162(10)
5.13.1 Image Intensifiers
163(2)
5.13.2 Viewing the Image
165(1)
5.13.3 Cinefluorography and Spot Films
166(1)
5.13.4 Digital Fluoroscopy
167(1)
5.13.4.1 Image Intensifier-TV Systems
167(3)
5.13.4.2 Charge Coupled Devices
170(1)
5.13.4.3 Flat Panel Detectors
171(1)
5.14 Quality Control of Image Receptors
172(5)
5.14.1 X-ray Film
172(1)
5.14.2 CR and DR Receptors
173(1)
5.14.2.1 Dark Noise
173(1)
5.14.2.2 Signal Transfer Property
173(1)
5.14.2.3 Erasure Efficiency
173(1)
5.14.2.4 Detector Uniformity
174(1)
5.14.2.5 Image Quality
174(1)
5.14.2.6 Detector Dose Indicator (DDI) Calibration
174(1)
5.14.2.7 CR Plate Sensitivity
174(1)
5.14.3 Fluoroscopic Imaging Devices
174(1)
5.14.3.1 Field Size
174(1)
5.14.3.2 Image Distortion
175(1)
5.14.3.3 Conversion Factor
175(1)
5.14.3.4 Contrast Capability and Resolution
175(1)
5.14.3.5 Automatic Brightness Control
176(1)
5.14.3.6 Viewing Screen Performance
176(1)
5.15 Conclusions
177(1)
References
178(1)
Further Reading
178(1)
Exercises
179(2)
6 The Radiological Image
181(38)
O W E Morrish
P P Dendy
6.1 Introduction---the Meaning of Image Quality
182(1)
6.2 The Primary Image
183(1)
6.3 Contrast
183(7)
6.3.1 Contrast on a Photoluminescent Screen
185(1)
6.3.2 Contrast on Radiographic Film
185(1)
6.3.3 Contrast on a Digital Image
186(2)
6.3.4 Origins of Contrast for Real and Artificial Media
188(2)
6.4 Effects of Overlying and Underlying Tissue
190(1)
6.5 Reduction of Contrast by Scatter
191(2)
6.6 Variation in Scatter with Photon Energy
193(1)
6.7 Reduction of Scatter
193(2)
6.7.1 Careful Choice of Beam Parameters
193(1)
6.7.2 Orientation of the Patient
194(1)
6.7.3 Compression of the Patient
194(1)
6.7.4 Use of Grids
194(1)
6.7.5 Air Gap Technique
194(1)
6.7.6 Design of Intensifying Screen and Cassette
195(1)
6.8 Grids
195(5)
6.8.1 Construction
195(1)
6.8.2 Use
196(4)
6.8.3 Movement
200(1)
6.9 Resolution and Unsharpness
200(5)
6.9.1 Geometric Unsharpness
200(2)
6.9.2 Patient Unsharpness
202(1)
6.9.3 Receptor Unsharpness
203(2)
6.9.4 Combining Unsharpnesses
205(1)
6.10 Quantum Mottle
205(1)
6.11 Image Processing
206(5)
6.11.1 Point Operations
207(1)
6.11.2 Local Operations
208(1)
6.11.3 Global Operations
209(2)
6.12 Geometric Relationship of Receptor, Patient and X-ray Source
211(3)
6.12.1 Magnification without Distortion
212(1)
6.12.2 Distortion of Shape and/or Position
213(1)
6.13 Review of Factors Affecting the Radiological Image
214(2)
6.13.1 Choice of Tube Kilovoltage
214(1)
6.13.2 Exposure Time
214(1)
6.13.3 Focal Spot Size
214(1)
6.13.4 Quality of Anode Surface
214(1)
6.13.5 Tube Current
215(1)
6.13.6 Beam Size
215(1)
6.13.7 Grids
215(1)
6.13.8 Focus-Receptor and Object-Receptor Distance
215(1)
6.13.9 Contrast Enhancement
215(1)
6.13.10 Image Receptor
215(1)
6.13.11 Film Processing
216(1)
6.13.12 Post-processing
216(1)
References
216(1)
Further Reading
216(1)
Exercises
216(3)
7 Assessment of Image Quality and Optimisation
219(38)
P P Dendy
O W E Morrish
7.1 Introduction
220(1)
7.2 Factors Affecting Image Quality
220(1)
7.2.1 Image Parameters
221(1)
7.2.2 Observation Parameters
221(1)
7.2.3 Psychological Parameters
221(1)
7.3 Operation of the Visual System
221(5)
7.3.1 Response to Different Light Intensities
222(1)
7.3.2 Rod and Cone Vision
222(1)
7.3.3 Relationship of Object Size, Contrast and Perception
223(1)
7.3.4 Eye Response to Different Spatial Frequencies
224(1)
7.3.5 Temporal Resolution and Movement Threshold
225(1)
7.4 Objective Definition of Contrast
226(2)
7.4.1 Limitations of a Subjective Definition of Contrast
226(1)
7.4.2 Signal-to-Noise Ratio and Contrast-to-Noise Ratio
227(1)
7.5 Quantum Noise
228(3)
7.6 Detective Quantum Efficiency (DQE)
231(1)
7.7 Assessment of Image Quality
231(9)
7.7.1 Modulation Transfer Function
231(5)
7.7.2 Physical/Physiological Assessment
236(1)
7.7.2.1 Method of Constant Stimulus
237(1)
7.7.2.2 Signal Detection Theory
238(1)
7.7.2.3 Ranking
238(2)
7.8 Receiver Operator Characteristic (ROC) Curves
240(5)
7.8.1 Principles
240(3)
7.8.2 ROC Curves in Practice
243(1)
7.8.2.1 Pixel Size and Image Quality in Digitised Chest Radiography
243(1)
7.8.2.2 Assessment of Competence as Film Readers in Screening Mammography
244(1)
7.8.2.3 Image Quality Following Data Compression
244(1)
7.9 Optimisation of Imaging Systems and Image Interpretation
245(7)
7.9.1 Optimising kVp for Digital Receptors
246(1)
7.9.2 Temporal Averaging
247(1)
7.9.3 Viewing Conditions
247(2)
7.9.4 Optimising Perception
249(1)
7.9.5 Computer-Aided Diagnosis (CAD)
250(2)
7.10 Design of Clinical Trials
252(2)
7.11 Conclusions
254(1)
References and Further Reading
255(1)
Exercises
256(1)
8 Tomographic Imaging with X-Rays
257(36)
S J Yates
P P Dendy
8.1 Introduction
258(2)
8.2 Longitudinal Tomography
260(2)
8.2.1 Digital Tomosynthesis
262(1)
8.3 Principles of X-ray Computed Tomography
262(3)
8.4 Single-Slice CT
265(11)
8.4.1 Data Collection
265(4)
8.4.2 Data Reconstruction
269(1)
8.4.2.1 Filtered Back Projection
269(5)
8.4.2.2 Iterative Methods
274(2)
8.5 Spiral CT
276(1)
8.6 Multi-Slice CT
277(4)
8.6.1 Data Collection
277(2)
8.6.2 Data Reconstruction and Storage
279(2)
8.7 Image Quality
281(1)
8.8 Dose Optimisation
282(3)
8.8.1 Tube Current Modulation
284(1)
8.9 Artefacts
285(1)
8.9.1 Mechanical Misalignment and Patient Movement
285(1)
8.9.2 X-ray Output Variation and Detector Non-Uniformities
285(1)
8.9.3 Partial Volume Effects
285(1)
8.9.4 Beam Hardening
286(1)
8.9.5 Aliasing
286(1)
8.9.6 Noise
286(1)
8.9.7 Scatter
286(1)
8.9.8 Cone-Beam Artefacts
286(1)
8.10 Quality Assurance
286(1)
8.11 Special Applications
287(2)
8.11.1 Four-Dimensional CT
287(1)
8.11.2 Cardiac CT
288(1)
8.11.3 Dual Energy and Spectral CT
289(1)
8.12 Conclusions
289(2)
References
291(1)
Further Reading
291(1)
Exercises
292(1)
9 Special Radiographic Techniques
293(44)
P P Dendy
B Heaton
9.1 Introduction
294(1)
9.2 Mammography---Low Voltage Radiography
294(12)
9.2.1 Introduction
294(1)
9.2.2 Molybdenum Anode Tubes
295(2)
9.2.3 Rhodium and Tungsten Anode Tubes
297(2)
9.2.4 Scatter
299(1)
9.2.5 Image Receptors
300(4)
9.2.6 Quality Control and Patient Doses
304(2)
9.3 High Voltage Radiography
306(4)
9.3.1 Principles
306(1)
9.3.2 The Image Receptor
307(1)
9.3.3 Scattered Radiation
308(2)
9.4 Magnification Radiography
310(4)
9.5 Subtraction Techniques
314(9)
9.5.1 Introduction
314(1)
9.5.2 Digital Subtraction Angiography
315(2)
9.5.2.1 Image Noise
317(1)
9.5.2.2 Roadmapping
318(1)
9.5.3 Dual Energy Subtraction
319(1)
9.5.4 Movement Artefact
320(1)
9.5.4.1 Time Interval Differencing
321(2)
9.6 Interventional Radiology
323(4)
9.6.1 Introduction
323(1)
9.6.2 Equipment Factors
323(2)
9.6.3 Doses to Patients
325(1)
9.6.4 Staff Doses
326(1)
9.7 Paediatric Radiology
327(4)
9.7.1 Review of Technical Criteria
327(3)
9.7.2 Patient Dose and Quality Criteria for Images
330(1)
9.8 Dental Radiology
331(4)
9.8.1 Technical Detail
332(1)
9.8.1.1 Intra-Oral Radiography
332(1)
9.8.1.2 Panoramic Radiography
332(1)
9.8.1.3 Image Receptors
333(1)
9.8.2 Protection and Quality Assurance
334(1)
References
335(1)
Further Reading
336(1)
Exercises
336(1)
10 Diagnostic Imaging with Radioactive Materials
337(38)
F I McKiddie
10.1 Introduction
338(1)
10.2 Principles of Imaging
339(10)
10.2.1 The Gamma Camera
340(1)
10.2.1.1 The Detector System
341(1)
10.2.1.2 The Collimator
342(3)
10.2.1.3 Pulse Processing
345(1)
10.2.1.4 Correction Circuits
346(1)
10.2.1.5 Image Display
347(1)
10.2.2 Additional Features on the Modern Gamma Camera
347(1)
10.2.2.1 Dual Headed Camera
347(1)
10.2.2.2 Whole Body Scanning
347(2)
10.2.2.3 Tomographic Camera
349(1)
10.2.2.4 The Cardiac Camera
349(1)
10.3 Factors Affecting the Quality of Radionuclide Images
349(10)
10.3.1 Information in the Image and Signal to Noise Ratio
350(1)
10.3.2 Choice of Radionuclide
351(2)
10.3.3 Choice of Radiopharmaceutical
353(1)
10.3.4 Performance of the Imaging Device
354(1)
10.3.4.1 Collimator Design
354(1)
10.3.4.2 Intrinsic Resolution
354(1)
10.3.4.3 System Resolution
355(1)
10.3.4.4 Spatial Linearity and Non-uniformity
355(1)
10.3.4.5 Effect of Scattered Radiation
356(2)
10.3.4.6 High Count Rates
358(1)
10.3.5 Data Display
358(1)
10.3.5.1 Persistence Monitor
358(1)
10.3.5.2 Display and Hard Copy
358(1)
10.3.5.3 Grey Scale versus Colour Images
359(1)
10.4 Dynamic Investigations
359(5)
10.4.1 Data Analysis
359(1)
10.4.1.1 Cine Mode
360(1)
10.4.1.2 Time-Activity Curves
360(1)
10.4.1.3 Deconvolution
361(1)
10.4.1.4 Functional Imaging
361(2)
10.4.2 Camera Performance at High Count Rates
363(1)
10.5 Single Photon Emission Computed Tomography (SPECT)
364(2)
10.6 Quality Standards, Quality Assurance and Quality Control
366(4)
10.6.1 Radionuclide Calibrators and Accuracy of Injected Doses
367(2)
10.6.2 Gamma Camera and Computer
369(1)
10.7 Conclusions
370(1)
References
371(1)
Exercises
372(3)
11 Positron Emission Tomographic Imaging (PET)
375(22)
P H Jarritt
11.1 Introduction
376(1)
11.2 PET Radionuclide Production and Properties
377(1)
11.3 Principles of PET Imaging and Detector Technology
378(4)
11.3.1 Positron Decay
378(3)
11.3.2 Coincidence Detection
381(1)
11.4 Detector Geometry
382(1)
11.5 Detector Construction
382(1)
11.6 Detector Resolution
383(1)
11.7 Detection Events
384(1)
11.8 Image Formation
385(2)
11.9 Image Reconstruction
387(1)
11.10 Multimodality Imaging
388(1)
11.11 Quality Control
389(1)
11.12 Clinical Implementation---Radiation Safety Considerations for PET Imaging
390(3)
11.12.1 Radiation Risks to Staff
390(3)
11.12.2 Radiation Dose to the Patient
393(1)
11.13 Current and Future Developments of PET and PET/CT
393(2)
11.14 Conclusion
395(1)
References
395(1)
Further Reading
396(1)
Exercises
396(1)
12 Radiobiology and Generic Radiation Risks
397(30)
P P Dendy
B Heaton
12.1 Introduction
398(1)
12.2 Radiation Sensitivity of Biological Materials
398(4)
12.2.1 Molecular Basis of High Radiosensitivity
398(1)
12.2.2 Cells Particularly at Risk
399(1)
12.2.3 Time Course of Radiation-Induced Death
400(2)
12.2.4 Other Mechanisms of Radiation-Induced Death
402(1)
12.2.5 Transformation of Cells and Cancer Induction
402(1)
12.3 Evidence on Radiobiological Damage from Cell Survival Curve Work
402(5)
12.3.1 Cellular Repair and Dose Rate Effects
405(1)
12.3.2 Radiobiological Effectiveness
406(1)
12.4 Radiation Weighting Factors, Equivalent Dose and the Sievert
407(1)
12.5 Radiation Effects on Humans
408(6)
12.5.1 Tissue Reactions and Stochastic Effects
408(3)
12.5.2 Carcinogenesis
411(1)
12.5.3 Mutagenesis
412(2)
12.6 Generic Risk Factors and Collective Doses
414(4)
12.7 Very Low Dose Radiation Risk
418(5)
12.7.1 Molecular Mechanisms
418(1)
12.7.2 Confounding Factors based on Radiobiological Data
419(1)
12.7.2.1 Bystander Effects
419(1)
12.7.2.2 Adaptive Responses
420(2)
12.7.3 Epidemiological Studies
422(1)
12.8 Conclusions
423(1)
References
423(1)
Exercises
424(3)
13 Radiation Doses and Risks to Patients
427(28)
K E Goldstone
P P Dendy
13.1 Introduction---Why Are Doses Measured?
428(1)
13.2 Principles of Patient Dose Measurement
428(2)
13.2.1 Where Is the Dose Measured?
428(1)
13.2.2 How Is the Dose Measured?
429(1)
13.3 Review of Patient Doses
430(4)
13.3.1 Entrance Doses in Radiography
430(1)
13.3.2 Entrance Doses in Fluoroscopy
431(2)
13.3.3 Doses in Interventional Procedures
433(1)
13.4 Effect of Digital Receptors on Patient Dose
434(1)
13.5 Effective Dose and Risks from Radiological Examinations
435(3)
13.5.1 Tissue Weighting Factors
435(1)
13.5.2 Organ Doses
436(2)
13.5.3 Effective Dose
438(1)
13.6 Optimisation and Patient Dose Reduction
438(3)
13.6.1 Technical Factors
439(2)
13.6.2 Non-Technical Factors
441(1)
13.7 Procedures Requiring Special Dose Assessment/Measurement
441(5)
13.7.1 Computed Tomography (CT)
441(3)
13.7.2 Mammography Doses
444(1)
13.7.3 Nuclear Medicine
445(1)
13.8 The Perception of Risk from Medical Radiation Exposures
446(2)
13.9 A Special High-Risk Situation---Irradiation In Utero
448(3)
13.9.1 Lethal Effects
449(1)
13.9.2 Malformations and Other Developmental Effects
449(1)
13.9.3 Radiation Effects on the Developing Brain
449(1)
13.9.4 Cancer Induction
449(1)
13.9.5 Hereditary Effects
450(1)
13.9.6 Summary of Effects of Radiation In Utero
450(1)
13.10 Conclusion
451(1)
References
451(2)
Exercises
453(2)
14 Practical Radiation Protection and Legislation
455(34)
B Heaton
P P Dendy
14.1 Introduction
457(1)
14.2 Role of Radiation Protection in Diagnostic Radiology
457(5)
14.2.1 Principles of Protection
457(1)
14.2.1.1 Justification
457(1)
14.2.1.2 Optimisation
458(1)
14.2.1.3 Application of Dose Limits (Limitation)
458(1)
14.2.2 Patient Protection
459(2)
14.2.3 Staff Protection
461(1)
14.2.3.1 Reduction of Dose Rate
461(1)
14.2.4 Public Protection
462(1)
14.3 European Legislation
462(4)
14.3.1 Introduction---the ICRP
462(1)
14.3.2 European Legislation
463(1)
14.3.3 Basic Safety Standards Directive 96/29/Euratom (1996)
463(2)
14.3.4 Medical Exposures Directive 97/43/Euratom (1997)
465(1)
14.3.5 Outside Workers Directive 90/641/Euratom (1990)
466(1)
14.3.6 New Euratom Basic Safety Standards
466(1)
14.4 UK Legislation
466(8)
14.4.1 Radioactive Substances Act (1993)
466(1)
14.4.2 The Medicines (Administration of Radioactive Substances) Regulations (1978)
467(1)
14.4.3 The Ionising Radiation (Medical Exposure) Regulations (2000)
468(1)
14.4.4 Transport Regulations for Radioactive Material
469(1)
14.4.5 Ionising Radiations Regulations (1999)
470(1)
14.4.5.1 Regulation 1
470(1)
14.4.5.2 Regulation 6
471(1)
14.4.5.3 Regulation 7 Risk Assessment
471(1)
14.4.5.4 Regulation 10 Engineering Controls
471(1)
14.4.5.5 Regulation 11 and Schedule 4 of ACOP Dose Limits
471(1)
14.4.5.6 Regulation 13 Radiation Protection Adviser
472(1)
14.4.5.7 Regulation 14 Training
472(1)
14.4.5.8 Regulations 16 and 18 with Schedule 4 Designation of Controlled and Supervised Areas
472(1)
14.4.5.9 Regulation 17 Local Rules and Radiation Protection Supervisors (RPSs)
472(1)
14.4.5.10 Regulations 19 and 21 Dose Assessment and Monitoring
473(1)
14.4.5.11 Regulation 27 Sealed Sources
473(1)
14.4.5.12 Regulations 31 and 32 Duties of Manufacturers and Equipment Requirements
473(1)
14.4.5.13 Regulations 33 and 34 Employee Responsibilities
474(1)
14.5 X-ray Rooms
474(1)
14.5.1 Introduction
474(1)
14.5.2 Points of Note on Room Design
475(1)
14.6 Nuclear Medicine
475(3)
14.6.1 Introduction
475(1)
14.6.2 Potential Internal Doses
476(1)
14.6.3 Calculation of Ingestion Dose
477(1)
14.6.4 Special Precautions in Nuclear Medicine
477(1)
14.6.5 PET Facilities
478(1)
14.7 Personal Dosimetry
478(6)
14.7.1 Thermoluminescent Dosimeters (TLDs) and Film Badges
479(1)
14.7.1.1 Thermoluminescent Dosimeters
479(1)
14.7.1.2 Film Badge Dosimeters
479(1)
14.7.1.3 Range of Response
479(1)
14.7.1.4 Linearity of Response
479(1)
14.7.1.5 Calibration against Radiation Standards
480(1)
14.7.1.6 Variation of Sensitivity with Radiation Energy
480(1)
14.7.1.7 Sensitivity to Temperature and Humidity
481(1)
14.7.1.8 Uniformity of Response within Batches
481(1)
14.7.1.9 Maximum Time of Use
481(1)
14.7.1.10 Compactness
481(1)
14.7.1.11 Permanent Visual Record
482(1)
14.7.1.12 Indication of Type of Radiation
482(1)
14.7.1.13 Indication of Pattern of Radiation
482(1)
14.7.2 Optical Luminescence and Electronic Dosimeters
482(1)
14.7.2.1 Optically Stimulated Luminescence
482(1)
14.7.2.2 Electronic Personal Dosimeters (EPDs)
483(1)
14.7.3 Staff Doses
483(1)
Appendix
484(3)
References
487(1)
Further Reading
488(1)
Exercises
488(1)
15 Diagnostic Ultrasound
489(74)
A C Fairhead
T A Whittingham
15.1 Introduction
491(1)
15.2 The Ultrasound Wave and the Principles of Echo Mapping
492(3)
15.3 Quantities That Describe an Ultrasound Wave
495(3)
15.3.1 Describing the Vibration of the Medium
495(1)
15.3.2 Excess Pressure
496(2)
15.4 The Scale of the Diagnostic Ultrasound Pulse in Time and Space, and Why This Is Important
498(2)
15.5 Production of Echoes
500(3)
15.5.1 Characteristic Acoustic Impedance of a Medium
500(1)
15.5.2 Reflection
501(1)
15.5.3 Scattering
502(1)
15.6 Other Aspects of Propagation
503(4)
15.6.1 Refraction at a Boundary
503(1)
15.6.2 Attenuation of Ultrasound
504(1)
15.6.3 Calculating the Effect of Attenuation
504(3)
15.6.4 Non-Linear Propagation
507(1)
15.6.5 Dispersion
507(1)
15.7 Ultrasound Probes, and How They Work
507(13)
15.7.1 The Transducer Element
507(2)
15.7.2 Directing Ultrasound along a Narrow Beam
509(1)
15.7.2.1 Principles of Beamforming
509(2)
15.7.2.2 The Receive Beam, and the Principle of Reciprocity
511(1)
15.7.2.3 Sidelobes and Grating Lobes
511(1)
15.7.2.4 The Need for Focussing
512(2)
15.7.2.5 Reducing the Slice Width of the Beam
514(1)
15.7.3 Scanning Probes
515(1)
15.7.3.1 Mechanically Scanned Probes
515(1)
15.7.3.2 Linear and Curvilinear Array Probes
516(2)
15.7.3.3 Annular Array Probes
518(1)
15.7.3.4 Phased Array Probes
518(1)
15.7.3.5 Intra-Corporeal Probes (Endoprobes)
519(1)
15.8 Overview of Diagnostic Ultrasound Modes
520(3)
15.8.1 Review of Principles
520(1)
15.8.2 A-Mode
520(1)
15.8.3 B-Mode
520(1)
15.8.4 M-Mode
521(1)
15.8.5 Doppler Modes
522(1)
15.9 Technical Aspects of B-Mode Ultrasound
523(9)
15.9.1 Some Factors that Affect the Quality of a B-Mode Image
523(1)
15.9.2 The Beamformer
524(1)
15.9.3 Radio Frequency Amplification and Time-Gain Control
525(1)
15.9.4 Digitisation
526(1)
15.9.5 Write Zoom
527(1)
15.9.6 Amplitude Demodulation
527(1)
15.9.7 Dynamic Range Compression
528(1)
15.9.8 Image Memory, Frame Store, and Scan Conversion
528(2)
15.9.9 Facilities Based on the Image Memory
530(1)
15.9.10 Post-Processing, or Grey-Map Selection
530(1)
15.9.11 The Display Monitor
531(1)
15.9.12 Storage of Images, Patient Details and Examination Reports
531(1)
15.10 B-Mode Artefacts
532(5)
15.10.1 Speckle Pattern
532(1)
15.10.2 Reverberation (Multiple Reflections)
533(1)
15.10.3 Mirror Image
534(1)
15.10.4 Beamwidth Artefacts
534(1)
15.10.5 Slice Thickness Artefact
534(1)
15.10.6 Incomplete Boundaries
534(1)
15.10.7 Acoustic Shadows
535(1)
15.10.8 Post-Cystic Enhancement
535(1)
15.10.9 Axial Registration Error
535(1)
15.10.10 Refraction Artefacts
536(1)
15.10.10.1 Lateral Registration Error, and Double Image
536(1)
15.10.10.2 Edge-Effect Shadowing
536(1)
15.10.10.3 Beam Distortion, or Aberration
536(1)
15.11 Tissue-Harmonic Imaging (THI)
537(4)
15.12 Compound Imaging (Compounding)
541(1)
15.12.1 Spatial Compounding
541(1)
15.12.2 Frequency Compounding
542(1)
15.13 Coded Excitation
542(2)
15.14 Contrast Media---Imaging and Therapy
544(2)
15.15 3D and 4D Ultrasound
546(1)
15.15.1 Introduction
546(1)
15.15.2 3D and 4D Probes and Modes
546(1)
15.16 Ultrasound Elastography
547(1)
15.17 The Doppler Effect
548(9)
15.17.1 The Doppler Spectrum of Blood
549(1)
15.17.2 Continuous-Wave Doppler Systems
550(1)
15.17.3 Audio Doppler Blood-Flow Indicators
551(1)
15.17.4 Sampling, Digitisation and Spectral Analysis of Doppler Signals
551(1)
15.17.5 Pulsed-Wave Spectral Doppler, Duplex Scanners and the Aliasing Artefact
552(2)
15.17.6 Interpretation of Doppler Signals
554(1)
15.17.7 Doppler Artefacts
555(1)
15.17.8 Doppler Imaging
555(2)
15.18 Ultrasound Safety
557(2)
15.18.1 Physical Effects and Their Biological Consequences
557(2)
15.18.2 Minimising Hazard
559(1)
Conclusion
559(1)
References
560(1)
Acknowledgements
560(1)
Exercises
561(2)
16 Magnetic Resonance Imaging
563(38)
Elizabeth A Moore
16.1 Introduction
564(1)
16.2 Basic Principles of Nuclear Magnetism
565(1)
16.3 Effect of an External Magnetic Field
566(3)
16.3.1 The Larmor Equation
567(1)
16.3.2 Net Magnetisation M0
568(1)
16.3.3 From Quantum to Classical
568(1)
16.4 Excitation and Signal Reception
569(1)
16.4.1 RF Excitation
569(1)
16.4.2 Signal Reception
570(1)
16.5 Relaxation Processes
570(3)
16.5.1 Spin-Lattice Relaxation
571(1)
16.5.2 Spin-Spin Relaxation
571(1)
16.5.3 Inhomogeneity Effects
572(1)
16.6 Production of Spin Echoes
573(2)
16.7 Magnetic Field Gradients
575(5)
16.7.1 Frequency Encoding Gradient and Fourier Transforms
576(1)
16.7.2 Phase Encoding Gradient
577(1)
16.7.3 Selective Excitation
578(2)
16.7.4 Review of Image Formation
580(1)
16.8 κ-space or Fourier Space
580(2)
16.9 Production of Gradient Echoes
582(3)
16.9.1 Dephasing Effects of Gradients
582(3)
16.9.2 Production of Gradient Echoes
585(1)
16.10 Image Contrast
585(5)
16.10.1 Spin Echo Image Contrast
586(1)
16.10.2 Gradient Echo Image Contrast
586(2)
16.10.3 T1W, T2W and PDw Images
588(1)
16.10.4 Inversion Recovery Sequences (STIR and FLAIR)
588(2)
16.11 Contrast Agents
590(1)
16.12 Artefacts and Avoiding Them
590(4)
16.12.1 Cardiac Gating
591(1)
16.12.2 Respiratory Gating
592(1)
16.12.3 MR Angiography
592(2)
16.12.4 Digital Imaging Artefacts
594(1)
16.12.5 Dephasing Artefacts
594(1)
16.13 Technical Considerations
594(2)
16.14 MRI Safety
596(2)
16.14.1 Main Magnetic Field
596(1)
16.14.2 Projectile Effect of B0
596(1)
16.14.3 Gradient Fields
597(1)
16.14.4 RF Fields
597(1)
16.14.5 MRI in Pregnancy
597(1)
16.15 Conclusions and Future Developments
598(1)
References
598(1)
Further Reading
599(1)
Exercises
599(2)
17 Digital Image Storage and Handling
601(32)
G Cusick
17.1 Introduction
603(1)
17.2 The Imaging Chain
603(1)
17.3 Image Acquisition---Digital Representation of Images
604(6)
17.3.1 Sampling
605(2)
17.3.2 Encoding and Storage
607(1)
17.3.2.1 Files
608(2)
17.4 PACS System Architectures
610(12)
17.4.1 Networks
610(1)
17.4.1.1 Functions of the Network
611(1)
17.4.1.2 Open Systems Interconnection
611(1)
17.4.2 Ethernet
612(1)
17.4.2.1 Network Topology---How Devices Are Connected Together
612(1)
17.4.2.2 Bridging and Switching
613(1)
17.4.2.3 Data Packaging on the Network
614(1)
17.4.2.4 Layers 2 and 3
615(1)
17.4.3 Internet Protocol
615(1)
17.4.3.1 IP Addressing
616(1)
17.4.3.2 Bandwidth and Latency
617(1)
17.4.3.3 Shared Networks
617(1)
17.4.3.4 Subnets and Virtual Networks
617(1)
17.4.3.5 Quality of Service
618(1)
17.4.4 Servers
618(1)
17.4.4.1 Image Acquisition
619(1)
17.4.4.2 Image Database
620(1)
17.4.4.3 Integration with Other Systems
620(1)
17.4.5 Virtualisation
620(1)
17.4.5.1 Storage
620(1)
17.4.5.2 Sizing Storage
621(1)
17.4.5.3 Strategies
621(1)
17.4.5.4 Backup and Security
621(1)
17.5 Display Devices
622(2)
17.5.1 Classes of Workstation
622(1)
17.5.1.1 Diagnostic Reporting
622(1)
17.5.1.2 High-Quality Clinical Workstations
622(1)
17.5.1.3 Generic
622(1)
17.5.2 Properties of Electronic Displays
623(1)
17.5.2.1 Dynamic Range
624(1)
17.5.2.2 Stability and Reliability
624(1)
17.6 Standards
624(2)
17.6.1 DICOM
624(1)
17.6.1.1 Overview
624(1)
17.6.1.2 What Is DICOM?
625(1)
17.6.2 The Medical Devices Directive
625(1)
17.6.2.1 Overview
625(1)
17.6.2.2 Consequences of Classification
626(1)
17.7 Availability and Reliability
626(1)
17.7.1 Availability
626(1)
17.7.1.1 Importance of PACS
626(1)
17.7.1.2 Management Consequences
627(1)
17.7.2 Reliability
627(1)
17.8 Data Compression
627(4)
17.8.1 Background---Reasons for Needing Compression
627(1)
17.8.2 Lossy Compression
628(1)
17.8.3 Lossless Compression
628(1)
17.8.3.1 Attributes
628(1)
17.8.3.2 JPEG 2000
629(2)
17.9 Conclusion
631(1)
References
631(1)
Further Reading
631(1)
Exercises
632(1)
18 Multiple Choice Questions
633(38)
18.1 MCQs
633(31)
18.2 MCQ Answers
664(3)
18.3 Notes
667(4)
Index 671
Philip Palin Dendy, Brian Heaton