|
|
|
|
3 | (8) |
|
1.1 What we Cannot Derive |
|
|
3 | (2) |
|
|
5 | (2) |
|
1.3 Elementary Particles and Fundamental Forces |
|
|
7 | (4) |
|
|
11 | (14) |
|
2.1 The Invariant of Special Relativity |
|
|
12 | (2) |
|
|
14 | (2) |
|
|
16 | (1) |
|
2.4 The Minkowski Notation |
|
|
17 | (2) |
|
2.5 Lorentz Transformations |
|
|
19 | (2) |
|
2.6 Invariance, Symmetry and Covariance |
|
|
21 | (4) |
|
|
|
|
25 | (70) |
|
|
26 | (3) |
|
3.2 Rotations in two Dimensions |
|
|
29 | (4) |
|
3.2.1 Rotations with Unit Complex Numbers |
|
|
31 | (2) |
|
3.3 Rotations in three Dimensions |
|
|
33 | (5) |
|
|
34 | (4) |
|
|
38 | (12) |
|
3.4.1 The Generators and Lie Algebra of SO(3) |
|
|
42 | (3) |
|
3.4.2 The Abstract Definition of a Lie Algebra |
|
|
45 | (1) |
|
3.4.3 The Generators and Lie Algebra of SU(2) |
|
|
46 | (1) |
|
3.4.4 The Abstract Definition of a Lie Group |
|
|
47 | (3) |
|
3.5 Representation Theory |
|
|
50 | (4) |
|
|
54 | (8) |
|
3.6.1 The Finite-dimensional Irreducible Representations of SU(2) |
|
|
54 | (7) |
|
3.6.2 The Representation of SU(2) in one Dimension |
|
|
61 | (1) |
|
3.6.3 The Representation of SU(2) in two Dimensions |
|
|
61 | (1) |
|
3.6.4 The Representation of SU(2) in three Dimensions |
|
|
62 | (1) |
|
3.7 The Lorentz Group O(1, 3) |
|
|
62 | (27) |
|
3.7.1 One Representation of the Lorentz Group |
|
|
66 | (3) |
|
3.7.2 Generators of the Other Components of the Lorentz Group |
|
|
69 | (1) |
|
3.7.3 The Lie Algebra of the Proper Orthochronous Lorentz Group |
|
|
70 | (2) |
|
3.7.4 The (0, 0) Representation |
|
|
72 | (1) |
|
3.7.5 The (1/2, 0) Representation |
|
|
72 | (2) |
|
3.7.6 The (0, 1/2) Representation |
|
|
74 | (1) |
|
3.7.7 Van der Waerden Notation |
|
|
75 | (5) |
|
3.7.8 The (1/2, 1/2) Representation |
|
|
80 | (4) |
|
|
84 | (2) |
|
3.7.10 Spinors and Charge Conjugation |
|
|
86 | (1) |
|
3.7.11 Infinite-Dimensional Representations |
|
|
87 | (2) |
|
|
89 | (2) |
|
|
91 | (1) |
|
3.10 Appendix: Rotations in a Complex Vector Space |
|
|
92 | (1) |
|
|
93 | (2) |
|
|
95 | (22) |
|
|
95 | (2) |
|
|
96 | (1) |
|
4.1.2 Variational Calculus -- the Basic Idea |
|
|
96 | (1) |
|
|
97 | (1) |
|
4.3 Particle Theories vs. Field Theories |
|
|
98 | (1) |
|
4.4 Euler-Lagrange Equation |
|
|
99 | (2) |
|
|
101 | (12) |
|
4.5.1 Noether's Theorem for Particle Theories |
|
|
101 | (4) |
|
4.5.2 Noether's Theorem for Field Theories -- Spacetime Symmetries |
|
|
105 | (3) |
|
4.5.3 Rotations and Boosts |
|
|
108 | (2) |
|
|
110 | (1) |
|
4.5.5 Noether's Theorem for Field Theories -- Internal Symmetries |
|
|
110 | (3) |
|
4.6 Appendix: Conserved Quantity from Boost Invariance for Particle Theories |
|
|
113 | (1) |
|
4.7 Appendix: Conserved Quantity from Boost Invariance for Field Theories |
|
|
114 | (3) |
|
Part III The Equations of Nature |
|
|
|
|
117 | (4) |
|
5.1 The Operators of Quantum Mechanics |
|
|
117 | (2) |
|
5.1.1 Spin and Angular Momentum |
|
|
118 | (1) |
|
5.2 The Operators of Quantum Field Theory |
|
|
119 | (2) |
|
|
121 | (10) |
|
6.1 Lorentz Covariance and Invariance |
|
|
121 | (1) |
|
6.2 Klein-Gordon Equation |
|
|
122 | (2) |
|
6.2.1 Complex Klein-Gordon Field |
|
|
124 | (1) |
|
|
124 | (3) |
|
|
127 | (4) |
|
|
131 | (46) |
|
|
133 | (10) |
|
7.1.1 Internal Symmetry of Free Spin 1/2 Fields |
|
|
134 | (1) |
|
7.1.2 Internal Symmetry of Free Spin 1 Fields |
|
|
135 | (1) |
|
7.1.3 Putting the Puzzle Pieces Together |
|
|
136 | (3) |
|
7.1.4 Inhomogeneous Maxwell Equations and Minimal Coupling |
|
|
139 | (1) |
|
7.1.5 Charge Conjugation, Again |
|
|
140 | (1) |
|
7.1.6 Noether's Theorem for Internal U(1) Symmetry |
|
|
141 | (1) |
|
7.1.7 Interaction of Massive Spin 0 Fields |
|
|
142 | (1) |
|
7.1.8 Interaction of Massive Spin 1 Fields |
|
|
143 | (1) |
|
|
143 | (7) |
|
7.3 Mass Terms and "Unification" of SU(2) and U(1) |
|
|
150 | (8) |
|
|
158 | (4) |
|
|
162 | (3) |
|
|
165 | (1) |
|
|
166 | (4) |
|
|
168 | (2) |
|
|
170 | (4) |
|
|
172 | (1) |
|
|
173 | (1) |
|
7.9 The Interplay Between Fermions and Bosons |
|
|
174 | (3) |
|
|
|
|
177 | (32) |
|
8.1 Particle Theory Identifications |
|
|
178 | (1) |
|
8.2 Relativistic Energy-Momentum Relation |
|
|
178 | (1) |
|
8.3 The Quantum Formalism |
|
|
179 | (3) |
|
|
181 | (1) |
|
8.4 The Schrodinger Equation |
|
|
182 | (3) |
|
8.4.1 Schrodinger Equation with an External Field |
|
|
185 | (1) |
|
8.5 From Wave Equations to Particle Motion |
|
|
185 | (11) |
|
8.5.1 Example: Free Particle |
|
|
185 | (1) |
|
8.5.2 Example: Particle in a Box |
|
|
186 | (3) |
|
|
189 | (2) |
|
8.5.4 Example: Particle in a Box, Again |
|
|
191 | (1) |
|
|
192 | (4) |
|
8.6 Heisenberg's Uncertainty Principle |
|
|
196 | (1) |
|
8.7 Comments on Interpretations |
|
|
197 | (1) |
|
8.8 Appendix: Interpretation of the Dirac Spinor Components |
|
|
198 | (5) |
|
8.9 Appendix: Solving the Dirac Equation |
|
|
203 | (2) |
|
8.10 Appendix: Dirac Spinors in Different Bases |
|
|
205 | (4) |
|
8.10.1 Solutions of the Dirac Equation in the Mass Basis |
|
|
207 | (2) |
|
|
209 | (24) |
|
9.1 Field Theory Identifications |
|
|
210 | (1) |
|
9.2 Free Spin 0 Field Theory |
|
|
211 | (5) |
|
9.3 Free Spin 1/2 Field Theory |
|
|
216 | (3) |
|
9.4 Free Spin 1 Field Theory |
|
|
219 | (1) |
|
9.5 Interacting Field Theory |
|
|
219 | (10) |
|
|
220 | (1) |
|
9.5.2 Time Evolution of States |
|
|
220 | (4) |
|
|
224 | (1) |
|
9.5.4 Evaluating the Series |
|
|
225 | (4) |
|
9.6 Appendix: Most General Solution of the Klein-Gordon Equation |
|
|
229 | (4) |
|
|
233 | (6) |
|
10.1 Relativistic Mechanics |
|
|
235 | (1) |
|
10.2 The Lagrangian of Non-Relativistic Mechanics |
|
|
236 | (3) |
|
|
239 | (6) |
|
11.1 The Homogeneous Maxwell Equations |
|
|
240 | (1) |
|
|
241 | (2) |
|
|
243 | (2) |
|
|
245 | (6) |
|
|
251 | (4) |
|
|
|
|
255 | (8) |
|
|
256 | (1) |
|
A.2 Change of Coordinate Systems |
|
|
257 | (2) |
|
A.3 Matrix Multiplication |
|
|
259 | (1) |
|
|
260 | (1) |
|
A.5 Right-handed and Left-handed Coordinate Systems |
|
|
260 | (3) |
|
|
263 | (6) |
|
|
263 | (1) |
|
|
263 | (1) |
|
|
264 | (2) |
|
|
266 | (1) |
|
|
266 | (2) |
|
|
268 | (1) |
|
B.4.3 Einstein's Sum Convention |
|
|
269 | (1) |
|
|
269 | (4) |
|
|
269 | (1) |
|
B.5.2 Objects with more than One Index |
|
|
270 | (1) |
|
B.5.3 Symmetric and Antisymmetric Indices |
|
|
270 | (1) |
|
B.5.4 Antisymmetric x Symmetric Sums |
|
|
271 | (1) |
|
B.5.5 Two Important Symbols |
|
|
272 | (1) |
|
|
273 | (4) |
|
C.1 Basic Transformations |
|
|
273 | (1) |
|
C.2 Matrix Exponential Function |
|
|
274 | (1) |
|
|
274 | (1) |
|
C.4 Eigenvalues and Eigenvectors |
|
|
275 | (1) |
|
|
275 | (2) |
|
D Additional Mathematical Notions |
|
|
277 | (4) |
|
|
277 | (1) |
|
|
278 | (3) |
Bibliography |
|
281 | (4) |
Index |
|
285 | |