Atnaujinkite slapukų nuostatas

Physics from Symmetry Second Edition 2018 [Kietas viršelis]

4.64/5 (42 ratings by Goodreads)
  • Formatas: Hardback, 287 pages, aukštis x plotis: 279x210 mm, 15 Illustrations, color; 13 Illustrations, black and white; XXI, 287 p. 28 illus., 15 illus. in color., 1 Hardback
  • Serija: Undergraduate Lecture Notes in Physics
  • Išleidimo metai: 18-Dec-2017
  • Leidėjas: Springer International Publishing AG
  • ISBN-10: 3319666304
  • ISBN-13: 9783319666303
Kitos knygos pagal šią temą:
  • Formatas: Hardback, 287 pages, aukštis x plotis: 279x210 mm, 15 Illustrations, color; 13 Illustrations, black and white; XXI, 287 p. 28 illus., 15 illus. in color., 1 Hardback
  • Serija: Undergraduate Lecture Notes in Physics
  • Išleidimo metai: 18-Dec-2017
  • Leidėjas: Springer International Publishing AG
  • ISBN-10: 3319666304
  • ISBN-13: 9783319666303
Kitos knygos pagal šią temą:

This is a textbook that derives the fundamental theories of physics from symmetry.
It starts by introducing, in a completely self-contained way, all mathematical tools needed to use symmetry ideas in physics. Thereafter, these tools are put into action and by using symmetry constraints, the fundamental equations of Quantum Mechanics, Quantum Field Theory, Electromagnetism, and Classical Mechanics are derived.

As a result, the reader is able to understand the basic assumptions behind, and the connections between the modern theories of physics. The book concludes with first applications of the previously derived equations.

Thanks to the input of readers from around the world, this second edition has been purged of typographical errors and also contains several revised sections with improved explanations.

Part I Foundations
1 Introduction
3(8)
1.1 What we Cannot Derive
3(2)
1.2 Book Overview
5(2)
1.3 Elementary Particles and Fundamental Forces
7(4)
2 Special Relativity
11(14)
2.1 The Invariant of Special Relativity
12(2)
2.2 Proper Time
14(2)
2.3 Upper Speed Limit
16(1)
2.4 The Minkowski Notation
17(2)
2.5 Lorentz Transformations
19(2)
2.6 Invariance, Symmetry and Covariance
21(4)
Part II Symmetry Tools
3 Lie Group Theory
25(70)
3.1 Groups
26(3)
3.2 Rotations in two Dimensions
29(4)
3.2.1 Rotations with Unit Complex Numbers
31(2)
3.3 Rotations in three Dimensions
33(5)
3.3.1 Quaternions
34(4)
3.4 Lie Algebras
38(12)
3.4.1 The Generators and Lie Algebra of SO(3)
42(3)
3.4.2 The Abstract Definition of a Lie Algebra
45(1)
3.4.3 The Generators and Lie Algebra of SU(2)
46(1)
3.4.4 The Abstract Definition of a Lie Group
47(3)
3.5 Representation Theory
50(4)
3.6 SU(2)
54(8)
3.6.1 The Finite-dimensional Irreducible Representations of SU(2)
54(7)
3.6.2 The Representation of SU(2) in one Dimension
61(1)
3.6.3 The Representation of SU(2) in two Dimensions
61(1)
3.6.4 The Representation of SU(2) in three Dimensions
62(1)
3.7 The Lorentz Group O(1, 3)
62(27)
3.7.1 One Representation of the Lorentz Group
66(3)
3.7.2 Generators of the Other Components of the Lorentz Group
69(1)
3.7.3 The Lie Algebra of the Proper Orthochronous Lorentz Group
70(2)
3.7.4 The (0, 0) Representation
72(1)
3.7.5 The (1/2, 0) Representation
72(2)
3.7.6 The (0, 1/2) Representation
74(1)
3.7.7 Van der Waerden Notation
75(5)
3.7.8 The (1/2, 1/2) Representation
80(4)
3.7.9 Spinors and Parity
84(2)
3.7.10 Spinors and Charge Conjugation
86(1)
3.7.11 Infinite-Dimensional Representations
87(2)
3.8 The Poincare Group
89(2)
3.9 Elementary Particles
91(1)
3.10 Appendix: Rotations in a Complex Vector Space
92(1)
3.11 Appendix: Manifolds
93(2)
4 The Framework
95(22)
4.1 Lagrangian Formalism
95(2)
4.1.1 Fermat's Principle
96(1)
4.1.2 Variational Calculus -- the Basic Idea
96(1)
4.2 Restrictions
97(1)
4.3 Particle Theories vs. Field Theories
98(1)
4.4 Euler-Lagrange Equation
99(2)
4.5 Noether's Theorem
101(12)
4.5.1 Noether's Theorem for Particle Theories
101(4)
4.5.2 Noether's Theorem for Field Theories -- Spacetime Symmetries
105(3)
4.5.3 Rotations and Boosts
108(2)
4.5.4 Spin
110(1)
4.5.5 Noether's Theorem for Field Theories -- Internal Symmetries
110(3)
4.6 Appendix: Conserved Quantity from Boost Invariance for Particle Theories
113(1)
4.7 Appendix: Conserved Quantity from Boost Invariance for Field Theories
114(3)
Part III The Equations of Nature
5 Measuring Nature
117(4)
5.1 The Operators of Quantum Mechanics
117(2)
5.1.1 Spin and Angular Momentum
118(1)
5.2 The Operators of Quantum Field Theory
119(2)
6 Free Theory
121(10)
6.1 Lorentz Covariance and Invariance
121(1)
6.2 Klein-Gordon Equation
122(2)
6.2.1 Complex Klein-Gordon Field
124(1)
6.3 Dirac Equation
124(3)
6.4 Proca Equation
127(4)
7 Interaction Theory
131(46)
7.1 U(1) Interactions
133(10)
7.1.1 Internal Symmetry of Free Spin 1/2 Fields
134(1)
7.1.2 Internal Symmetry of Free Spin 1 Fields
135(1)
7.1.3 Putting the Puzzle Pieces Together
136(3)
7.1.4 Inhomogeneous Maxwell Equations and Minimal Coupling
139(1)
7.1.5 Charge Conjugation, Again
140(1)
7.1.6 Noether's Theorem for Internal U(1) Symmetry
141(1)
7.1.7 Interaction of Massive Spin 0 Fields
142(1)
7.1.8 Interaction of Massive Spin 1 Fields
143(1)
7.2 SU(2) Interactions
143(7)
7.3 Mass Terms and "Unification" of SU(2) and U(1)
150(8)
7.4 Parity Violation
158(4)
7.5 Lepton Mass Terms
162(3)
7.6 Quark Mass Terms
165(1)
7.7 Isospin
166(4)
7.7.1 Labelling States
168(2)
7.8 U(3) Interactions
170(4)
7.8.1 Color
172(1)
7.8.2 Quark Description
173(1)
7.9 The Interplay Between Fermions and Bosons
174(3)
Part IV Applications
8 Quantum Mechanics
177(32)
8.1 Particle Theory Identifications
178(1)
8.2 Relativistic Energy-Momentum Relation
178(1)
8.3 The Quantum Formalism
179(3)
8.3.1 Expectation Value
181(1)
8.4 The Schrodinger Equation
182(3)
8.4.1 Schrodinger Equation with an External Field
185(1)
8.5 From Wave Equations to Particle Motion
185(11)
8.5.1 Example: Free Particle
185(1)
8.5.2 Example: Particle in a Box
186(3)
8.5.3 Dirac Notation
189(2)
8.5.4 Example: Particle in a Box, Again
191(1)
8.5.5 Spin
192(4)
8.6 Heisenberg's Uncertainty Principle
196(1)
8.7 Comments on Interpretations
197(1)
8.8 Appendix: Interpretation of the Dirac Spinor Components
198(5)
8.9 Appendix: Solving the Dirac Equation
203(2)
8.10 Appendix: Dirac Spinors in Different Bases
205(4)
8.10.1 Solutions of the Dirac Equation in the Mass Basis
207(2)
9 Quantum Field Theory
209(24)
9.1 Field Theory Identifications
210(1)
9.2 Free Spin 0 Field Theory
211(5)
9.3 Free Spin 1/2 Field Theory
216(3)
9.4 Free Spin 1 Field Theory
219(1)
9.5 Interacting Field Theory
219(10)
9.5.1 Scatter Amplitudes
220(1)
9.5.2 Time Evolution of States
220(4)
9.5.3 Dyson Series
224(1)
9.5.4 Evaluating the Series
225(4)
9.6 Appendix: Most General Solution of the Klein-Gordon Equation
229(4)
10 Classical Mechanics
233(6)
10.1 Relativistic Mechanics
235(1)
10.2 The Lagrangian of Non-Relativistic Mechanics
236(3)
11 Electrodynamics
239(6)
11.1 The Homogeneous Maxwell Equations
240(1)
11.2 The Lorentz Force
241(2)
11.3 Coulomb Potential
243(2)
12 Gravity
245(6)
13 Closing Words
251(4)
Part V Appendices
A Vector calculus
255(8)
A.1 Basis Vectors
256(1)
A.2 Change of Coordinate Systems
257(2)
A.3 Matrix Multiplication
259(1)
A.4 Scalars
260(1)
A.5 Right-handed and Left-handed Coordinate Systems
260(3)
B Calculus
263(6)
B.1 Product Rule
263(1)
B.2 Integration by Parts
263(1)
B.3 The Taylor Series
264(2)
B.4 Series
266(1)
B.4.1 Important Series
266(2)
B.4.2 Splitting Sums
268(1)
B.4.3 Einstein's Sum Convention
269(1)
B.5 Index Notation
269(4)
B.5.1 Dummy Indices
269(1)
B.5.2 Objects with more than One Index
270(1)
B.5.3 Symmetric and Antisymmetric Indices
270(1)
B.5.4 Antisymmetric x Symmetric Sums
271(1)
B.5.5 Two Important Symbols
272(1)
C Linear Algebra
273(4)
C.1 Basic Transformations
273(1)
C.2 Matrix Exponential Function
274(1)
C.3 Determinants
274(1)
C.4 Eigenvalues and Eigenvectors
275(1)
C.5 Diagonalization
275(2)
D Additional Mathematical Notions
277(4)
D.1 Fourier Transform
277(1)
D.2 Delta Distribution
278(3)
Bibliography 281(4)
Index 285
Jakob Schwichtenberg - Karlsruhe, Germany.