Atnaujinkite slapukų nuostatas

El. knyga: Physics of the Manhattan Project

  • Formatas: EPUB+DRM
  • Išleidimo metai: 02-Jan-2021
  • Leidėjas: Springer Nature Switzerland AG
  • Kalba: eng
  • ISBN-13: 9783030613730
  • Formatas: EPUB+DRM
  • Išleidimo metai: 02-Jan-2021
  • Leidėjas: Springer Nature Switzerland AG
  • Kalba: eng
  • ISBN-13: 9783030613730

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

The development of nuclear weapons during the Manhattan Project is one of the most significant scientific events of the twentieth century. This revised and updated 4th edition explores the challenges that faced the scientists and engineers of the Manhattan Project. It gives a clear introduction to fission weapons at the level of an upper-year undergraduate physics student by examining the details of nuclear reactions, their energy release, analytic and numerical models of the fission process, how critical masses can be estimated, how fissile materials are produced, and what factors complicate bomb design. An extensive list of references and a number of exercises for self-study are included. 

Revisions to this fourth edition include many upgrades and new sections. Improvements are made to, among other things, the analysis of the physics of the fission barrier, the time-dependent simulation of the explosion of a nuclear weapon, and the discussion of tamped bomb cores. New sections cover, for example, composite bomb cores, approximate methods for various of the calculations presented, and the physics of the polonium-beryllium "neutron initiators" used to trigger the bombs.

The author delivers in this book an unparalleled, clear and comprehensive treatment of the physics behind the Manhattan project.

Recenzijos

The volume is targeted at readers with an advanced undergraduate physics background, with the goals of explicating the principles behind the fission bombs completed in 1945, and of using these principles to illuminate more general areas of physics, such as electromagnetism and statistical mechanics. both physicists and historians might find it most useful as a reference work. (Joseph D. Martin, Metascience, Vol. 30, August 25, 2021)

1 Energy Release in Nuclear Reactions, Neutrons, Fission, and Characteristics of Fission
1(50)
1.1 Notational Conventions for Mass Excess and Q-Values
1(2)
1.2 Rutherford and the Energy Release in Radium Decay
3(2)
1.3 Rutherford's First Artificial Nuclear Transmutation
5(1)
1.4 Discovery of the Neutron
6(8)
1.5 Artificially-Induced Radioactivity and the Path to Fission
14(5)
1.6 Energy Release in Fission
19(1)
1.7 The Bohr-Wheeler Theory of Fission: The Z2/A Limit Against Spontaneous Fission
20(6)
1.8 Energy Spectrum of Fission Neutrons
26(3)
1.9 Leaping the Fission Barrier
29(6)
1.10 A Semi-empirical Look at the Fission Barrier
35(4)
1.11 A Numerical Model of the Fission Process
39(7)
1.12 Results
46(2)
References
48(3)
2 Critical Mass, Efficiency, and Yield
51(68)
2.1 Cross-Sections, Mean Free Path, and the Diffusion Equation
52(6)
2.2 Critical Mass: Bare Core
58(9)
2.3 Critical Mass: Tamped Core
67(9)
2.4 Critical Mass: Tamped Composite Core
76(5)
2.5 Estimating Yield---Analytic
81(12)
2.6 Estimating Yield---Numerical
93(5)
2.6.1 A Simulation of the Hiroshima Little Boy Bomb
95(3)
2.7 History Lesson: Criticality Considered in 1939
98(4)
2.8 Criticality and Yield: Approximate Methods
102(8)
2.8.1 Bare Critical Mass: Simplified Boundary Condition
102(1)
2.8.2 Bare Critical Mass: An Even Simpler Approach
102(1)
2.8.3 Estimating the Yield of the Trinity Test by Examining the Rate of Growth of the Fireball
103(3)
2.8.4 A Simplified Model of Tamped-Core Yield
106(4)
2.9 Critical Mass of a Cylindrical Core (Optional)
110(6)
References
116(3)
3 Producing Fissile Material
119(26)
3.1 Reactor Criticality
119(5)
3.2 Neutron Thermalization
124(3)
3.3 Plutonium Production
127(3)
3.4 Electromagnetic Separation of Isotopes
130(7)
3.5 Gaseous (Barrier) Diffusion
137(6)
References
143(2)
4 Complicating Factors
145(30)
4.1 Boron Contamination in Graphite
146(2)
4.2 Spontaneous Fission of 240Pu, Predetonation, and Implosion
148(7)
4.2.1 Little Boy Predetonation Probability
152(1)
4.2.2 Fat Man Predetonation Probability
152(3)
4.3 Predetonation Yield
155(8)
4.4 Tolerable Limits for Light-Element Impurities
163(3)
4.5 Neutron Initiators
166(5)
4.6 Estimating the Contribution of 238U to the Trinity Yield
171(2)
References
173(2)
5 Miscellaneous Calculations
175(16)
5.1 How Warm Is It?
175(1)
5.2 Brightness of the Trinity Explosion
176(7)
5.3 A Model for Trace Isotope Production in a Reactor
183(5)
5.4 Can Fission Make a Grain of Sand Visibly Jump?
188(1)
References
188(3)
6 Appendices
191(62)
6.1 Appendix A: Selected δ-Values and Fission Barriers
191(1)
6.2 Appendix B: Densities, Cross-Sections, Secondary Neutron Numbers, and Spontaneous-Fission Half-Lives
192(1)
6.2.1 Thermal Neutrons (0.0253 eV)
192(1)
6.2.2 Fast Neutrons (Fission-Spectrum Averages)
193(1)
6.3 Appendix C: Energy and Momentum Conservation in a Two-Body Collision
193(4)
6.4 Appendix D: Energy and Momentum Conservation in a Two-Body Collision that Produces a Gamma-Ray
197(2)
6.5 Appendix E: Formal Derivation of the Bohr-Wheeler Spontaneous Fission Limit
199(14)
6.5.1 Introduction
199(1)
6.5.2 Nuclear Surface Profile and Volume
200(4)
6.5.3 The Area Integral
204(2)
6.5.4 The Coulomb Integral and the SF Limit
206(7)
6.6 Appendix F: Average Neutron Escape Probability from Within a Sphere
213(5)
6.7 Appendix G: The Neutron Diffusion Equation
218(8)
6.8 Appendix H: Exercises and Answers
226(10)
6.9 Appendix I: Glossary of Symbols
236(6)
6.10 Appendix J: Further Reading
242(8)
6.10.1 General Works
242(3)
6.10.2 Biographical and Autobiographical Works
245(2)
6.10.3 Technical Works
247(2)
6.10.4 Websites
249(1)
6.11 Appendix K: Useful Constants and Rest Masses
250(1)
References
251(2)
Index 253
Bruce Cameron Reed is the Charles A. Dana Professor of Physics at Alma College (Michigan), emeritus. He has published five textbooks and over 50 journal papers and semi-popular articles on the Manhattan Project; three of the texts are with Springer (one of these is currently in press, a popular treatment of the Project). In 2009, he was elected a Fellow of the American Physical Society in recognition of his contributions to promoting understanding of the history and physics of the Manhattan Project.