|
|
xviii | |
|
|
1 | (14) |
|
|
3 | (6) |
|
1.1.1 Metallic wires and metal-to-metal contacts |
|
|
4 | (2) |
|
1.1.2 Semiconductor systems |
|
|
6 | (1) |
|
1.1.3 Carbon nanotubes and molecules |
|
|
7 | (1) |
|
|
8 | (1) |
|
1.2 Classical vs. quantum transport |
|
|
9 | (6) |
|
|
10 | (1) |
|
|
10 | (3) |
|
|
13 | (1) |
|
|
14 | (1) |
|
|
15 | (22) |
|
2.1 Semiclassical Boltzmann equation |
|
|
17 | (2) |
|
|
19 | (1) |
|
2.3 Relaxation time approximation |
|
|
19 | (1) |
|
2.4 Elastic scattering and diffusive limit |
|
|
20 | (3) |
|
2.4.1 Currents in the diffusive limit |
|
|
22 | (1) |
|
|
23 | (5) |
|
2.5.1 Electron-electron scattering |
|
|
24 | (3) |
|
2.5.2 Electron-phonon scattering |
|
|
27 | (1) |
|
|
28 | (2) |
|
2.7 Magnetic heterostructures |
|
|
30 | (4) |
|
2.8 Thermoelectric effects |
|
|
34 | (3) |
|
|
35 | (1) |
|
|
36 | (1) |
|
3 Scattering approach to quantum transport |
|
|
37 | (23) |
|
3.1 Scattering region, leads and reservoirs |
|
|
38 | (6) |
|
3.1.1 Transverse modes in semi-infinite leads |
|
|
38 | (2) |
|
3.1.2 Current carried by a transverse mode |
|
|
40 | (1) |
|
3.1.3 Wire between two reservoirs |
|
|
41 | (1) |
|
3.1.4 Quantum point contacts |
|
|
42 | (2) |
|
|
44 | (4) |
|
3.2.1 Some properties of the scattering matrix |
|
|
45 | (2) |
|
3.2.2 Combining scattering matrices: Feynman paths |
|
|
47 | (1) |
|
3.3 Conductance from scattering |
|
|
48 | (5) |
|
3.3.1 Diffusive wire and Drude formula |
|
|
51 | (2) |
|
|
53 | (1) |
|
3.5 Models for inelastic scattering and dephasing |
|
|
54 | (1) |
|
|
55 | (5) |
|
3.6.1 Time-dependent transport |
|
|
55 | (1) |
|
3.6.2 Non-linear transport |
|
|
56 | (1) |
|
3.6.3 Application to magnetic systems |
|
|
56 | (2) |
|
|
58 | (1) |
|
|
58 | (2) |
|
4 Quantum interference effects |
|
|
60 | (18) |
|
|
61 | (1) |
|
|
62 | (8) |
|
|
64 | (1) |
|
4.2.2 Localization length |
|
|
65 | (1) |
|
4.2.3 Weak localization from enhanced backscattering |
|
|
65 | (2) |
|
|
67 | (1) |
|
4.2.5 Magnetic field effect on weak localization |
|
|
68 | (2) |
|
4.3 Universal conductance fluctuations |
|
|
70 | (2) |
|
4.3.1 Effect of dephasing |
|
|
72 | (1) |
|
|
72 | (6) |
|
|
76 | (1) |
|
|
76 | (2) |
|
5 Introduction to superconductivity |
|
|
78 | (16) |
|
|
78 | (1) |
|
5.2 Main physical properties |
|
|
79 | (5) |
|
5.2.1 Current without dissipation |
|
|
79 | (1) |
|
|
80 | (1) |
|
|
80 | (3) |
|
5.2.4 Energy gap and BCS divergence |
|
|
83 | (1) |
|
|
83 | (1) |
|
|
84 | (2) |
|
5.4 Main phenomena characteristic for mesoscopic systems |
|
|
86 | (8) |
|
|
86 | (2) |
|
5.4.2 Andreev bound states |
|
|
88 | (3) |
|
|
91 | (1) |
|
|
92 | (1) |
|
|
92 | (2) |
|
6 Fluctuations and correlations |
|
|
94 | (27) |
|
6.1 Definition and main characteristics of noise |
|
|
94 | (4) |
|
6.1.1 Motivations for the study of noise |
|
|
96 | (1) |
|
6.1.2 Fluctuation-dissipation theorem |
|
|
96 | (1) |
|
6.1.3 Thermal and vacuum fluctuations |
|
|
97 | (1) |
|
|
97 | (1) |
|
6.2 Scattering approach to noise |
|
|
98 | (4) |
|
|
99 | (3) |
|
6.3 Langevin approach to noise in electric circuits |
|
|
102 | (2) |
|
6.4 Boltzmann-Langevin approach |
|
|
104 | (1) |
|
|
105 | (3) |
|
6.5.1 Equilibrium correlations |
|
|
106 | (1) |
|
6.5.2 Finite-voltage cross-correlations |
|
|
106 | (2) |
|
6.6 Effect of noise on quantum dynamics |
|
|
108 | (6) |
|
|
109 | (1) |
|
|
110 | (4) |
|
6.7 Full counting statistics |
|
|
114 | (3) |
|
|
114 | (1) |
|
6.7.2 Full counting statistics of charge transfer |
|
|
115 | (2) |
|
|
117 | (4) |
|
|
118 | (1) |
|
|
118 | (3) |
|
7 Single-electron effects |
|
|
121 | (19) |
|
|
121 | (3) |
|
7.1.1 Single-electron box |
|
|
123 | (1) |
|
7.1.2 Single-electron transistor (SET) |
|
|
124 | (1) |
|
7.2 Tunnel Hamiltonian and tunnelling rates |
|
|
124 | (3) |
|
|
127 | (2) |
|
|
129 | (2) |
|
7.5 Dynamical Coulomb blockade |
|
|
131 | (4) |
|
|
133 | (2) |
|
7.6 Single-electron devices |
|
|
135 | (5) |
|
7.6.1 Coulomb blockade thermometer |
|
|
135 | (1) |
|
7.6.2 Radio frequency SET |
|
|
136 | (1) |
|
7.6.3 Single-electron pump |
|
|
137 | (1) |
|
|
138 | (1) |
|
|
139 | (1) |
|
|
140 | (19) |
|
8.1 Electronic states in quantum dots |
|
|
141 | (3) |
|
|
142 | (2) |
|
8.2 Weakly interacting limit |
|
|
144 | (2) |
|
8.3 Weakly transmitting limit: Coulomb blockade |
|
|
146 | (5) |
|
|
149 | (1) |
|
|
149 | (1) |
|
|
150 | (1) |
|
8.3.4 Charge sensing with quantum point contacts |
|
|
151 | (1) |
|
|
151 | (2) |
|
|
153 | (6) |
|
8.5.1 Artificial molecules |
|
|
154 | (1) |
|
8.5.2 Spin states in double quantum dots |
|
|
154 | (1) |
|
8.5.3 Pauli spin blockade |
|
|
155 | (1) |
|
8.5.4 Spin qubits in quantum dots |
|
|
156 | (1) |
|
|
157 | (1) |
|
|
157 | (2) |
|
9 Tunnel junctions with superconductors |
|
|
159 | (24) |
|
9.1 Tunnel contacts without Josephson coupling |
|
|
159 | (3) |
|
|
159 | (1) |
|
|
160 | (1) |
|
9.1.3 Superconducting SET |
|
|
160 | (2) |
|
9.2 SINIS heat transport and pumping |
|
|
162 | (5) |
|
9.2.1 Thermometry with (SI)NIS junctions |
|
|
163 | (1) |
|
9.2.2 Electron cooling and refrigeration |
|
|
163 | (4) |
|
|
167 | (5) |
|
|
167 | (2) |
|
9.3.2 Resistively and capacitively shunted junction model |
|
|
169 | (1) |
|
|
170 | (1) |
|
|
170 | (1) |
|
|
170 | (2) |
|
9.4 Quantum effects in small Josephson junctions |
|
|
172 | (11) |
|
9.4.1 `Tight-binding limit' |
|
|
173 | (1) |
|
9.4.2 `Nearly free-electron limit' |
|
|
174 | (3) |
|
9.4.3 Superconducting qubits |
|
|
177 | (4) |
|
|
181 | (1) |
|
|
181 | (2) |
|
|
183 | (20) |
|
10.1 Electron dispersion relation in monolayer graphene |
|
|
184 | (3) |
|
10.1.1 Massless Dirac fermions in graphene |
|
|
184 | (2) |
|
10.1.2 Eigensolutions in monolayer graphene |
|
|
186 | (1) |
|
|
187 | (6) |
|
10.2.1 Multilayer graphene |
|
|
189 | (4) |
|
10.3 Ray optics with electrons: np and npn junctions |
|
|
193 | (3) |
|
10.3.1 Graphene np junction |
|
|
193 | (1) |
|
|
194 | (2) |
|
|
196 | (2) |
|
10.5 Graphene nanoribbons |
|
|
198 | (5) |
|
|
198 | (2) |
|
|
200 | (1) |
|
|
201 | (1) |
|
|
201 | (2) |
|
11 Nanoelectromechanical systems |
|
|
203 | (26) |
|
11.1 Nanomechanical systems |
|
|
205 | (6) |
|
11.1.1 Basic elastic theory |
|
|
205 | (1) |
|
11.1.2 Flexular eigenmodes of a doubly clamped beam without tension |
|
|
206 | (2) |
|
11.1.3 Effect of tension on the vibration modes |
|
|
208 | (1) |
|
11.1.4 Driving and dissipation |
|
|
209 | (2) |
|
11.2 Coupling to nanoelectronics |
|
|
211 | (5) |
|
11.2.1 Magnetomotive actuation and detection |
|
|
211 | (1) |
|
11.2.2 Capacitive actuation and detection |
|
|
212 | (2) |
|
|
214 | (1) |
|
11.2.4 Detection through single-electron effects |
|
|
215 | (1) |
|
11.3 Coupling to microwave resonant circuits |
|
|
216 | (6) |
|
|
222 | (7) |
|
11.4.1 Creating a quantum superposition of vibration states in an oscillator-qubit system |
|
|
223 | (3) |
|
11.4.2 Describing dissipation |
|
|
226 | (1) |
|
|
227 | (1) |
|
|
228 | (1) |
|
A Important technical tools |
|
|
229 | (14) |
|
A.1 Second quantization: a short introduction |
|
|
229 | (3) |
|
|
229 | (2) |
|
|
231 | (1) |
|
A.2 Heisenberg and Schrodinger pictures |
|
|
232 | (2) |
|
A.2.1 Interaction picture |
|
|
233 | (1) |
|
|
234 | (3) |
|
A.3.1 Higher order: generalized Fermi golden rule |
|
|
235 | (2) |
|
A.4 Describing magnetic field in quantum mechanics |
|
|
237 | (1) |
|
A.5 Chemical potential and Fermi energy |
|
|
237 | (3) |
|
|
240 | (1) |
|
|
241 | (2) |
|
|
241 | (2) |
|
B Current operator for the scattering theory |
|
|
243 | (2) |
|
C Fluctuation-dissipation theorem |
|
|
245 | (4) |
|
C.1 Linear response theory and susceptibility |
|
|
245 | (2) |
|
C.2 Derivation of the fluctuation-dissipation theorem |
|
|
247 | (2) |
|
D Derivation of the Boltzmann-Langevin noise formula |
|
|
249 | (4) |
|
E Reflection coefficient in electronic circuits |
|
|
253 | (2) |
References |
|
255 | (20) |
Index |
|
275 | |