Atnaujinkite slapukų nuostatas

El. knyga: Phytonutritional Improvement of Crops

  • Formatas: EPUB+DRM
  • Išleidimo metai: 25-Jul-2017
  • Leidėjas: Wiley-Blackwell
  • Kalba: eng
  • ISBN-13: 9781119079989
  • Formatas: EPUB+DRM
  • Išleidimo metai: 25-Jul-2017
  • Leidėjas: Wiley-Blackwell
  • Kalba: eng
  • ISBN-13: 9781119079989

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

An in-depth treatment of cutting-edge work being done internationally to develop new techniques in crop nutritional quality improvement

Phytonutritional Improvement of Crops explores recent advances in biotechnological methods for the nutritional enrichment of food crops. Featuring contributions from an international group of experts in the field, it provides cutting-edge information on techniques of immense importance to academic, professional and commercial operations.

World population is now estimated to be 7.5 billion people, with an annual growth rate of nearly 1.5%. Clearly, the need to enhance not only the quantity of food produced but its quality has never been greater, especially among less developed nations. Genetic manipulation offers the best prospect for achieving that goal. As many fruit crops provide proven health benefits, research efforts need to be focused on improving the nutritional qualities of fruits and vegetables through increased synthesis of lycopene and beta carotene, anthocyanins and some phenolics known to be strong antioxidants. Despite tremendous growth in the area occurring over the past several decades, the work has only just begun. This book represents an effort to address the urgent need to promote those efforts and to mobilise the tools of biotechnical and genetic engineering of the major food crops. Topics covered include:

  • New applications of RNA-interference and virus induced gene silencing (VIGS) for nutritional genomics in crop plants
  • Biotechnological techniques for enhancing carotenoid in crops and their implications for both human health and sustainable development
  • Progress being made in the enrichment and metabolic profiling of diverse carotenoids in a range of fruit crops, including tomatoes, sweet potatoes and tropical fruits
  • Biotechnologies for boosting the phytonutritional values of key crops, including grapes and sweet potatoes
  • Recent progress in the development of transgenic rice engineered to massively accumulate flavonoids in-seed

Phytonutritional Improvement of Crops is an important text/reference that belongs in all universities and research establishments where agriculture, horticulture, biological sciences, and food science and technology are studied, taught and applied. 

List of Contributors xv
Foreword xxi
1 Important Plant-Based Phytonutrients 1(82)
Avik Basu
Saikat Kumar Basu
Ratnabali Sengupta
Muhammad Asif
Xianping Li
Yanshan Li
Arvind Hirani
Peiman Zandi
Muhammad Sajad
Francisco Solorio-Sanchez
Ambrose Obongo Mbuya
William Cetzal-lx
Sonam Tashi
Tshitila Jongthap
Danapati Dhungyel
Mukhtar Ahmad
List of Abbreviations
1(1)
1.1 Introduction
2(1)
1.2 Nutraceuticals and Functional Foods in Human Health
3(46)
1.3 Plants with Potential for Use as Nutraceutical Source and Functional Food Component
49(1)
1.4 Nutraceutical Values of Fenugreek
49(2)
1.4.1 Fenugreek Possesses the Following Medicinal Properties
50(8)
1.4.1.1 Antioxidant Activity
50(1)
1.4.1.2 Anti-leukemic Effect
50(1)
1.4.1.3 Anti-Hyperglycemic Effect
50(1)
1.4.1.4 Hypocholesterolemic Effect
51(1)
1.4.1.5 Neuroprotective Effect
51(1)
1.4.1.6 Anticarcinogenic Effect
51(1)
1.5 Coloured Potatoes as Functional Food
51(3)
1.6 Red Wine as Functional Food
54(1)
1.7 Tea as Functional Food
54(1)
1.8 Cereals as Nutraceuticals
55(3)
1.9 Nutraceutical Properties of Wheat Bran and Germ
58(1)
1.9.1 Wheat Bran
58(1)
1.9.2 Wheat Germ
59(1)
1.10 Barley and Oat as Nutraceuticals
59(1)
1.11 Value-Added Products
59(2)
1.12 Conclusion
61(1)
Acknowledgements
61(1)
References
61(22)
2 Biotechnological Interventions for Improvement of Plant Nutritional Value: From Mechanisms to Applications 83(30)
Rajan Katoch
Sunil Kumar Singh
Neelam Thakur
2.1 Introduction
83(1)
2.2 Improvement of Food Nutrition
84(1)
2.3 Improvement of Nutritional Value Through Crop Improvement
85(1)
2.4 Identification of Genes With the Potential to Improve the Nutritional Quality
86(4)
2.5 Genetic Engineering for the Introduction of Nutritionally Potential Genes
90(2)
2.6 Nutritional Improvement Through Recent Biotechnological Advances
92(2)
2.7 Production of Health Care Products
94(5)
2.7.1 The Development of Oral Vaccines in Plant System
95(1)
2.7.2 Advantages of Plant System in the Development of Oral Vaccines
96(2)
2.7.3 Edible Vaccine against Hepatitis B Virus
98(16)
2.7.3.1 Expression of Immunogenic S1 Glycoprotein of Infectious Bronchitis Virus in Transgenic Potatoes
98(1)
2.7.3.2 Immunisation against Rabies with Plant-Derived Antigen
99(1)
2.7.3.3 Immunisation with Potato Plants Expressing VP60 Protein Protects against Rabbit Hemorrhagic Disease Virus
99(1)
2.7.3.4 Oral Immunisation with Hepatitis B Surface Antigen Expressed in Transgenic Plants
99(1)
2.7.3.5 Oral Immunogenicity of Human Papillomavirus-Like Particles Expressed in Potato
99(1)
2.8 Major Biotechnological Advances in Nutritional Improvement of Plants
99(1)
2.9 Conclusion
100(1)
References
100(13)
3 Nutrient Biofortification of Staple Food Crops: Technologies, Products and Prospects 113(72)
Chavali Kameswara Rao
Seetharam Annadana
3.1 Introduction
113(1)
3.2 The Concepts of Nutrition and Malnutrition
114(4)
3.2.1 Nutrition, Macronutrients, Micronutrients and Balanced Diets
114(2)
3.2.1.1 Macronutrients and Energy Requirement
115(1)
3.2.1.2 Micronutrients
115(1)
3.2.1.3 The Balanced Diets
115(1)
3.2.2 Hunger, Nutritional Security, Undernutrition and Malnutrition
116(1)
3.2.3 The Metabolic Syndrome
116(2)
3.3 Strategies to Enhance Nutrient Intake and Nutrient Content of Plant Foods
118(7)
3.3.1 Interventions to Enhance Nutrient Intake
118(1)
3.3.2 Technologies for Biofortification
119(1)
3.3.3 Common Genetic Engineering Technologies
120(2)
3.3.4 Alternative Genetic Engineering Technologies
122(1)
3.3.5 Recent Genetic Engineering Technologies
123(1)
3.3.6 Moral and Ethical Arguments Against Genetic Engineering Technologies
124(1)
3.4 Quantitative and Qualitative Modification of Dietary Carbohydrates
125(6)
3.4.1 The Carbohydrates
125(3)
3.4.2 Modifying Levels of Components of Starch
128(1)
3.4.3 Engineering Levels of Fructans
129(1)
3.4.4 Quantitative and Qualitative Enhancement Dietary Fibre
130(1)
3.5 Quantitative and Qualitative Enhancement of Proteins and Amino Acids
131(5)
3.5.1 The Proteins and Amino Acids
131(1)
3.5.2 Enhancement of Total Protein
132(1)
3.5.3 Enhancement of Levels of Lysine
132(1)
3.5.4 Enhancement of Levels of Methionine
133(1)
3.5.5 Simultaneous Enhancement of levels Several Amino Acids
133(1)
3.5.6 Artificial Storage Protein
133(1)
3.5.7 Alternate Interventions
134(1)
3.5.8 Non-Proteinogenic Amino Acids
135(1)
3.6 Quantitative and Qualitative Enhancement of Fatty Acids in Oil Seed Crops
136(5)
3.6.1 Lipids, Fats and Oils
136(1)
3.6.2 Cholesterol
136(1)
3.6.3 Characterisation of Fatty Acids, Dietary Fats and Oils
136(1)
3.6.4 Quantitative and Qualitative Improvement of Oil Seed Crops
137(3)
3.6.5 The New Shift in Fat Paradigm and Its Implications
140(1)
3.7 Enhancement of Levels of Vitamins
141(7)
3.7.1 The Vitamins
141(1)
3.7.2 Retinoids (Vitamin A)
142(3)
3.7.2.1 The Golden Crops
143(1)
3.7.2.2 Golden Rice
144(1)
3.7.2.3 Golden Sorghum
145(1)
3.7.2.4 Orange Maize
145(1)
3.7.3 Folate (Vitamin B9)
145(1)
3.7.4 Ascorbic Acid (Vitamin C)
146(1)
3.7.5 Tocopherols (Vitamin E)
147(1)
3.7.6 Multi-vitamin Corn
148(1)
3.8 Enhancement of Levels of Mineral Elements
148(9)
3.8.1 Role of Mineral Elements in Human Health
148(2)
3.8.2 Iron (Fe)
150(2)
3.8.3 Zinc (Zn)
152(2)
3.8.4 Calcium (Ca)
154(1)
3.8.5 Selenium (Se)
155(1)
3.8.6 Iodine (I)
156(1)
3.8.7 Fluoride (Fl)
157(1)
3.9 Enhancement of Antioxidants
157(3)
3.9.1 The Antioxidants
157(1)
3.9.2 Lycopene
158(1)
3.9.3 Flavonoids
159(1)
3.9.4 Carotenoids
159(1)
3.9.5 Other Antioxidants
160(1)
3.9.6 Thermal Stability of Antioxidants
160(1)
3.10 Mitigation of Levels of Antinutritional Factors
160(3)
3.10.1 The Antinutritional Factors
160(1)
3.10.2 Phytate
160(2)
3.10.3 Inhibitors of Digestive Enzymes
162(1)
3.10.4 Reducing Levels of Allergens
162(1)
3.10.5 Other Significant Antinutritional Factors
163(1)
3.11 Conclusions and Recommendations
163(4)
Acknowledgement
167(1)
References
167(18)
4 Applications of RNA-Interference and Virus-Induced Gene Silencing (VIGS) for Nutritional Genomics in Crop Plants 185(18)
Subodh Kumar Sinha
Basavaprabhu L. Patil
4.1 Introduction
185(1)
4.2 RNA Interference
186(6)
4.2.1 RNAi in Modification of Primary Metabolism
186(2)
4.2.1.1 Amino Acids/Protein
186(1)
4.2.1.2 Carbohydrate
187(1)
4.2.1.3 Lipid
187(1)
4.2.1.4 Food Allergens
188(1)
4.2.2 RNAi for Modification of Secondary Metabolism
188(19)
4.2.2.1 Prolongation of Fruit Shelf-Life
190(2)
4.2.2.2 Seedless Fruit Development
192(1)
4.3 Virus-Induced Gene Silencing (VIGS) for Biofortification
192(3)
4.4 Conclusions
195(1)
References
196(7)
5 Strategies for Enhancing Phytonutrient Content in Plant-Based Foods 203(30)
Carla S. Santos
Noureddine Benkeblia
Marta W. Vasconcelos
5.1 Introduction
203(1)
5.2 What are Phytonutrients?
204(1)
5.3 Which Plant-Based Foods are the Best Known Sources of Phytonutrients?
205(2)
5.4 How Can We Enhance Phytonutrients?
207(3)
5.4.1 Conventional Breeding
207(1)
5.4.2 Molecular Breeding
208(1)
5.4.3 Metabolic Engineering and Genetic Modification
208(2)
5.5 Phenotyping for Phytonutrients at Different Levels
210(6)
5.5.1 Low Throughput Techniques
210(3)
5.5.2 High-Throughput Techniques
213(3)
5.6 The Future Ahead/Concluding Remarks
216(1)
Acknowledgements
217(1)
References
217(16)
6 The Use of Genetic Engineering to Improve the Nutritional Profile of Traditional Plant Foods 233(26)
Marta R.M. Lima
Carla S. Santos
Marta W. Vasconcelos
6.1 Introduction
233(3)
6.1.1 Nutrients in Plant Foods
233(2)
6.1.2 Consequences of Malnutrition
235(1)
6.1.3 Strategies to Overcome Malnutrition
235(1)
6.2 What Are Genetically Engineered Crops?
236(9)
6.2.1 Plant Genetic Transformation Technologies
236(2)
6.2.2 Traditional Foods with Enhanced Nutritional Profiles: Case Studies
238(43)
6.2.2.1 Rice
238(5)
6.2.2.2 Potato
243(1)
6.2.2.3 Soybean
244(1)
6.2.2.4 Maize
245(1)
6.3 GM Plant Foods Under Approval for Commercial Utilisation
245(2)
6.4 Socioeconomic Impact and Safety of GM Foods
247(1)
Acknowledgements
248(1)
References
248(11)
7 Carotenoids: Biotechnological Improvements for Human Health and Sustainable Development 259(12)
George G. Khachatourians
7.1 Introduction
259(1)
7.2 Occurrence
260(1)
7.3 Discovery and Early History
260(2)
7.4 Carotenoids Use in Human Foods and Biotechnology
262(2)
7.5 Use of Carotenoids in Animal Feed
264(1)
7.6 Global Market Situation and Sustainability
264(2)
7.7 Carotenoid Biosynthesis and Function in Plants
266(2)
7.8 Conclusion and Perspectives
268(1)
References
268(3)
8 Progress in Enrichment and Metabolic Profiling of Diverse Carotenoids in Tropical Fruits: Importance of Hyphenated Techniques 271(38)
Bangalore Prabhashankar Arathi
Poorigali Raghavendra-Rao Sowmya
Kariyappa Vijay
Vallikannan Baskaran
Rangaswamy Lakshminarayana
8.1 Introduction
271(3)
8.2 Trends in Biosynthesis of Carotenoids and their Profiling in Plants and Tropical Fruits
274(7)
8.3 Biotechnological Approaches to Enrich Carotenoids in Tropical Fruits
281(4)
8.3.1 Conventional Approaches to Enrich Carotenoids in Tropical Fruits
283(1)
8.3.2 Pre- and Post-Harvest Technology to Improve Carotenoids Contents in Tropical Fruits
283(2)
8.4 Bioaccessibility and Bioavailability of Carotenoids From Fruits and Their Products
285(6)
8.5 Techniques to Characterise Carotenoids from Fruits
291(3)
8.6 Conclusion
294(1)
Acknowledgements
294(1)
References
295(14)
9 Improvement of Carotenoid Accumulation in Tomato Fruit 309(30)
Lihong Liu
Zhiyong Shao
Min Zhang
Tianyu Liu
Haoran Liu
Shuo Li
Yuanyuan Liu
Qiaomei Wang
List of Abbreviations
309(1)
9.1 Introduction
310(2)
9.2 Metabolism of Carotenoid in Tomato
312(4)
9.2.1 Biosynthesis of Carotenoid
312(3)
9.2.2 Catabolism of Carotenoid
315(1)
9.3 The Biosynthetic Capacities of the Plastid
316(1)
9.4 Hormonal Regulatory Network of Carotenoid Metabolism
317(3)
9.4.1 Ethylene
317(1)
9.4.2 Jasmonates
318(1)
9.4.3 Brassinosteroids
319(1)
9.4.4 Abscisic acid
319(1)
9.4.5 Gibberellin
320(1)
9.4.6 Auxin
320(1)
9.5 Environmental Regulation of Carotenoid Metabolism
320(2)
9.5.1 Light
320(2)
9.5.2 Temperature
322(1)
9.5.3 Carbon Dioxide (CO2)
322(1)
9.5.4 Post-Harvest Regulation
322(1)
9.6 Bioavailability of Carotenoid
322(2)
9.7 Food Omics
324(1)
Acknowledgements
324(3)
References
327(12)
10 Modern Biotechnologies and Phytonutritional Improvement of Grape and Wine 339(52)
Atanas Atanassov
Teodora Dzhambazova
Ivanka Kamenova
Ivan Tsvetkov
Vasil Georgiev
lvayla Dincheva
Ilion Badjakov
Dasha Mihaylova
Miroslava Kakalova
Atanas Pavlov
Plamen Molloy
10.1 Grape Genomics
339(3)
10.1.1 Identifying Genes Behind the Main Secondary Metabolites
340(1)
10.1.2 Identifying Disease Resistance Genes in Vitis sp.-a New Level of Grapevine Breeding
341(1)
10.2 Marker Assisted Selection (MAS) and Genomic Selection (GS) of Grapevine
342(1)
10.3 Engineered Resistance to Viruses
343(7)
10.4 Diagnosis of Grapevine Viruses
350(3)
10.4.1 Biological Assays
350(1)
10.4.1.1 Woody Indexing
350(1)
10.4.1.2 Herbaceous Indexing
350(1)
10.4.2 Serological Assays
350(1)
10.4.3 Molecular Assays
351(2)
10.4.3.1 Nucleic Acid Hybridization
351(1)
10.4.3.2 Polymerase Chain Reaction (PCR)
351(2)
10.5 Phytonutritional Compounds with Biological Activity in Grape and Wine and Their Target Analyses
353(8)
10.5.1 Biologically Active Substances Found in Grape and Wine
353(5)
10.5.2 LC-MS and GC-MS Based Analysis and Metabolomics
358(2)
10.5.2.1 Gas Chromatography-Mass Spectrometry (GC-MS)
359(1)
10.5.2.2 Liquid Chromatography-Mass Spectrometry (LC-MS)
360(1)
10.5.3 NMR-Based Metabolomic Analysis of Grape and Wine
360(1)
10.6 Wine Quality
361(6)
10.6.1 What is the Particular Meaning We Imply to the Term 'Quality of Wine'?
361(1)
10.6.2 How is the Wine Quality Created?
362(5)
10.7 Grapevine Genetic Resources- Prospects in Management and Sustainable Use
367(3)
10.7.1 European Policy, Regulation and Coordination Initiatives
367(1)
10.7.2 Vitis Grapevine Genebanks, Collections and Databases
368(1)
10.7.3 European Scientific Achievements
369(1)
References
370(21)
11 Phytonutrient Improvements of Sweetpotato 391(16)
Noureddine Benkeblia
11.1 Introduction
391(2)
11.2 Nutritional Qualities of Sweetpotato
393(3)
11.3 Phytonutrient Improvements of Sweetpotato
396(3)
10.3.1 Sweetpotato Improvement for beta-Carotene
396(1)
10.3.2 Sweetpotato Improvement for Anthocyanins and Phenolics
397(2)
10.3.3 Other Nutrient Improvements
399(1)
11.4 Conclusion and Future Perspectives
399(1)
Acknowledgements
400(1)
References
400(7)
12 Improvement of Glucosinolate in Cruciferous Crops 407(44)
Huiying Miao
Bo Sun
Yanting Zhao
Hongmei Qian
Congxi Cai
Jiaqi Chang
Mingdan Deng
Xin Zhang
Qiaomei Wang
List of Abbreviations
407(1)
12.1 Introduction
408(1)
12.2 Glucosinolate Breakdown
408(3)
12.2.1 Glucosinolate Breakdown Upon Tissue Damage
409(1)
12.2.2 Glucosinolate Breakdown in Living Plant Cell
410(1)
12.2.3 Glucosinolate Hydrolysis in Mammalian
411(1)
12.3 Biological Functions of Glucosinolates and Their Hydrolysis Products
411(3)
12.3.1 Anticarcinogenic Mechanism
411(2)
12.3.1.1 Detoxification
411(1)
12.3.1.2 Cell Cycle Arrest and Apoptosis
412(1)
12.3.1.3 Altered Oestrogen Metabolism
412(1)
12.3.1.4 Histone Deacetylation Inhibition
413(1)
12.3.2 Other Chemopeventive Effects
413(1)
12.3.3 Adverse Effects
413(1)
12.4 Glucosinolate Biosynthesis
414(4)
12.4.1 Side-Chain Elongation
414(1)
12.4.2 Formation of Core Glucosinolate Structure
414(2)
12.4.3 Secondary Modifications
416(1)
12.4.4 Regulators of Glucosinolate Biosynthetic Pathway
416(2)
12.5 Metabolic Engineering of Glucosinolates in Brassica Crops
418(3)
12.6 Glucosinolate Accumulation under Pre-Harvest and Post-Harvest Handlings
421(11)
12.6.1 Effects of Light on Glucosinolate Accumulation
422(1)
12.6.1.1 Photoperiod
422(1)
12.6.1.2 Light Quality
422(1)
12.6.2 Chemical Regulation of Glucosinolate Accumulation
423(4)
12.6.2.1 Phytohormones
423(1)
12.6.2.2 Sugars
424(1)
12.6.2.3 Salinity
425(1)
12.6.2.4 Fertilisation
426(1)
12.6.3 Glucosinolate Changes upon Post-Harvest Handlings
427(44)
12.6.3.1 Cooling
427(1)
12.6.3.2 Controlled Atmosphere (CA) Storage
428(1)
12.6.3.3 Modified Atmosphere Packaging
428(1)
12.6.3.4 1-Methylcyclopropene (1-MCP) Treatment
429(1)
12.6.3.5 Processing
430(1)
12.6.3.6 Glucosinolate Changes under Different Cooking Methods
430(2)
12.7 Conclusions and Future Prospects
432(1)
Acknowledgements
433(1)
References
433(18)
13 Development of the Transgenic Rice Accumulating Flavonoids in Seed by Metabolic Engineering 451(20)
Yuko Ogo
Fumio Takaiwa
13.1 Introduction
451(3)
13.2 Production of Flavonoids in Rice Seed by Ectopic Expression of the Biosynthetic Enzymes
454(4)
13.3 Production of Flavonoids in Rice Seed by Ectopic Expression of the Transcription Factors
458(2)
13.4 Characterisation of Flavonoids in Transgenic Rice Seed by LC-MS-based Metabolomics
460(1)
13.5 Future Prospects
461(2)
References
463(8)
14 Nutrient Management for High Efficiency Sweetpotato Production 471(28)
Yong-Chun Zhang
Ji-Dong Wang
Yan-Xi Shi
Dai-Fu Ma
14.1 Patterns of Growth and Development and Nutrient Absorption in Sweetpotato
471(3)
14.1.1 Area under Sweetpotato
471(1)
14.1.2 Growth Characteristics
471(1)
14.1.3 Nutrient Requirements
472(1)
14.1.4 Factors Affecting Nutrient Absorption
472(2)
14.1.4.1 Soil Moisture Content
472(1)
14.1.4.2 Genotype
472(2)
14.1.4.3 Yield
474(1)
14.1.4.4 Soil Aeration
474(1)
14.2 Screening of High Efficient of Potassium Uptake and Utilised Genotypes
474(6)
14.2.1 Potassium Deficiency
474(2)
14.2.2 Potassium Use Efficiency and Utilisation Efficiency
476(1)
14.2.3 Screening of High Uptake Efficiency Genotypes
476(2)
14.2.4 Screening of High Use Efficiency Genotypes
478(2)
14.3 Effect of Fertilisers
480(3)
14.3.1 Effect of Nitrogen Application
480(2)
14.3.1.1 Effect of Dose of Nitrogen on Yield
480(1)
14.3.1.2 Effect of Dose of Nitrogen on Nitrogen Uptake and Utilisation Efficiency
480(1)
14.3.1.3 Effect of Dose of Nitrogen on Root System Differentiation and Yield
481(1)
14.3.2 Effect of Phosphorus Application
482(1)
14.3.3 Effect of Potassium Application
482(1)
14.3.4 Effect of Nitrogen, Phosphorus, and Potassium Application on Yield
483(1)
14.4 Balanced Fertiliser Management in Sweetpotato at Sishui, Shandong: A Case Study
483(10)
14.4.1 General Description of Area
483(2)
14.4.2 Major Steps Towards Balanced Application of Fertilisers
485(6)
14.4.2.1 Soil Sampling and Testing
485(1)
14.4.2.2 Establishment of Abundance Index for Soil Nutrients
485(1)
14.4.2.3 Determining Fertiliser Parameters
485(3)
14.4.2.4 Recommended Dose of Fertilisers
488(2)
14.4.2.5 A Customised Fertiliser Management Plan for the Region
490(1)
14.4.2.6 Validating the Benefits of Balanced Application of Fertilisers
491(1)
14.4.2.7 Demonstration and Promotion of the Technology of Balanced Application of Fertilisers to Sweetpotato
491(1)
14.4.3 Establishment and Application of an Expert Consultation System
491(2)
14.4.3.1 Structure and Design of Expert Consultation System
492(1)
14.4.3.2 Functioning of the System
492(1)
14.4.3.3 Characterising and Application of the System
492(1)
14.5 Application of Fertilisers Through Drip Irrigation ('Fertigation')
493(2)
14.5.1 Effect of Supplying Fertilisers Through Drip Irrigation on Sweetpotato
494(1)
14.5.2 Input/output Ratio in Application of Fertilisers Through Drip Irrigation
495(1)
Acknowledgements
495(1)
References
495(4)
Index 499
Noureddine Benkeblia, PhD is Professor of Crop Science in the Department of Life Sciences, the University of the West Indies, Jamaica. He is involved in food science research focusing on food-plant biochemistry and physiology, and he is recognised internationally for his work on pre- and postharvest metabolism in crops. Prof. N. Benkeblia is the recipient of many awards, among them the UWI-Award for the "Most Outstanding Research," 2011 and 2013.