Preface |
|
xi | |
Introduction |
|
1 | (12) |
|
0.1 Part 1: The Plaid Model and its Properties |
|
|
5 | (1) |
|
0.2 Part 2: The Plaid PET |
|
|
5 | (1) |
|
0.3 Part 3: The Graph PET |
|
|
6 | (1) |
|
0.4 Part 4: Plaid-Graph Correspondence |
|
|
7 | (2) |
|
0.5 Part 5: The Distribution of Orbits |
|
|
9 | (1) |
|
|
10 | (3) |
Part 1: The Plaid Model |
|
13 | (78) |
|
Chapter 1 Definition of the Plaid Model |
|
|
15 | (10) |
|
|
15 | (1) |
|
1.2 Basic Quantities and Notation |
|
|
15 | (1) |
|
1.3 Six Families of Lines |
|
|
15 | (2) |
|
1.4 Capacity, Mass, and Sign |
|
|
17 | (1) |
|
|
18 | (3) |
|
1.6 Transverse Directions for the Light Points |
|
|
21 | (2) |
|
|
23 | (2) |
|
Chapter 2 Properties of the Model |
|
|
25 | (10) |
|
|
25 | (1) |
|
|
25 | (3) |
|
2.3 The Number of Intersection Points |
|
|
28 | (2) |
|
2.4 The Meaning of Capacity |
|
|
30 | (2) |
|
|
32 | (3) |
|
Chapter 3 Using the Model |
|
|
35 | (10) |
|
|
35 | (1) |
|
|
35 | (2) |
|
3.3 Hierarchical Information |
|
|
37 | (2) |
|
3.4 A Subdivision Algorithm |
|
|
39 | (3) |
|
3.5 Comparing Different Parameters |
|
|
42 | (3) |
|
Chapter 4 Particles and Spacetime Diagrams |
|
|
45 | (12) |
|
|
45 | (1) |
|
|
46 | (1) |
|
|
46 | (2) |
|
|
48 | (3) |
|
4.5 Spacetime Diagrams and Their Symmetries |
|
|
51 | (2) |
|
|
53 | (4) |
|
Chapter 5 Three-Dimensional Interpretation |
|
|
57 | (14) |
|
|
57 | (1) |
|
|
57 | (1) |
|
5.3 Pixelated Spacetime Diagrams |
|
|
58 | (2) |
|
|
60 | (3) |
|
5.5 Spacetime Plaid Surfaces |
|
|
63 | (3) |
|
5.6 Discussion and Speculation |
|
|
66 | (5) |
|
Chapter 6 Pixellation and Curve Turning |
|
|
71 | (10) |
|
|
71 | (1) |
|
6.2 Orienting the Worldlines |
|
|
71 | (2) |
|
6.3 The Sparseness of Worldlines |
|
|
73 | (1) |
|
6.4 Curve Turning Theorem: Vertical Case |
|
|
74 | (2) |
|
6.5 Curve Turning Theorem: Horizontal Case |
|
|
76 | (2) |
|
|
78 | (3) |
|
Chapter 7 Connection to the Truchet Tile System |
|
|
81 | (10) |
|
|
81 | (1) |
|
|
81 | (2) |
|
7.3 The Truchet Comparison Theorem |
|
|
83 | (2) |
|
7.4 The Fundamental Surface |
|
|
85 | (1) |
|
7.5 A Result from Elementary Number Theory |
|
|
86 | (2) |
|
7.6 Proof of the Truchet Comparison Theorem |
|
|
88 | (3) |
Part 2: The Plaid Pet |
|
91 | (42) |
|
Chapter 8 The Plaid Master Picture Theorem |
|
|
93 | (10) |
|
|
93 | (1) |
|
|
94 | (1) |
|
8.3 The Checkerboard Partition |
|
|
94 | (4) |
|
|
98 | (2) |
|
|
100 | (3) |
|
Chapter 9 The Segment Lemma |
|
|
103 | (8) |
|
|
103 | (2) |
|
|
105 | (1) |
|
|
105 | (2) |
|
|
107 | (1) |
|
|
108 | (3) |
|
Chapter 10 The Vertical Lemma |
|
|
111 | (8) |
|
|
111 | (1) |
|
|
112 | (1) |
|
10.3 Translating the Picture |
|
|
113 | (1) |
|
10.4 Some Useful Formulas |
|
|
113 | (2) |
|
10.5 The Undirected Result |
|
|
115 | (2) |
|
10.6 Determining the Directions |
|
|
117 | (2) |
|
Chapter 11 The Horizontal Lemma |
|
|
119 | (6) |
|
|
119 | (1) |
|
|
120 | (1) |
|
11.3 Translating the Picture |
|
|
121 | (1) |
|
11.4 Two Easy Technical Lemmas |
|
|
122 | (1) |
|
11.5 The Undirected Result |
|
|
123 | (1) |
|
11.6 Determining the Directions |
|
|
123 | (2) |
|
Chapter 12 Proof of the Main Result |
|
|
125 | (8) |
|
|
125 | (1) |
|
|
125 | (2) |
|
|
127 | (1) |
|
|
128 | (2) |
|
|
130 | (3) |
Part 3: The Graph Pet |
|
133 | (38) |
|
Chapter 13 Graph Master Picture Theorem |
|
|
135 | (8) |
|
|
135 | (1) |
|
|
135 | (1) |
|
13.3 The Arithmetic Graph |
|
|
136 | (1) |
|
13.4 A Preliminary Result |
|
|
137 | (2) |
|
|
139 | (2) |
|
13.6 The Fundamental Polytopes |
|
|
141 | (2) |
|
Chapter 14 Pinwheels and Quarter Turns |
|
|
143 | (10) |
|
|
143 | (1) |
|
|
143 | (2) |
|
14.3 Outer Billiards and the Pinwheel Map |
|
|
145 | (1) |
|
14.4 Quarter Turn Compositions |
|
|
146 | (1) |
|
14.5 The Pinwheel Map as a QTC |
|
|
147 | (4) |
|
|
151 | (2) |
|
Chapter 15 Quarter Turn Compositions and PETS |
|
|
153 | (8) |
|
|
153 | (1) |
|
15.2 A Result from Linear Algebra |
|
|
154 | (1) |
|
|
154 | (2) |
|
15.4 Compactifying Shears |
|
|
156 | (1) |
|
15.5 Compactifying Quarter Turn Maps |
|
|
156 | (3) |
|
15.6 The End of the Proof |
|
|
159 | (2) |
|
Chapter 16 The Nature of the Compactification |
|
|
161 | (10) |
|
|
161 | (1) |
|
16.2 The Singular Directions |
|
|
162 | (1) |
|
16.3 The First Parallelotope |
|
|
163 | (2) |
|
16.4 The Second Parallelotope |
|
|
165 | (1) |
|
16.5 The General Master Picture Theorem |
|
|
166 | (1) |
|
16.6 Structure of the PET |
|
|
167 | (1) |
|
|
168 | (3) |
Part 4: The Plaid-Graph Correspondence |
|
171 | (40) |
|
Chapter 17 The Orbit Equivalence Theorem |
|
|
173 | (12) |
|
|
173 | (1) |
|
|
174 | (1) |
|
|
175 | (1) |
|
17.4 Characterizing the Image |
|
|
176 | (1) |
|
|
177 | (1) |
|
|
178 | (2) |
|
17.7 Computational Techniques |
|
|
180 | (2) |
|
|
182 | (3) |
|
Chapter 18 The Quasi-Isomorphism Theorem |
|
|
185 | (10) |
|
|
185 | (1) |
|
18.2 The Canonical Affine Transformation |
|
|
186 | (1) |
|
|
187 | (1) |
|
18.4 The Intertwining Lemma |
|
|
188 | (1) |
|
18.5 The Correspondence of Orbits |
|
|
189 | (3) |
|
18.6 The End of the Proof |
|
|
192 | (1) |
|
18.7 The Projection Theorem |
|
|
193 | (1) |
|
18.8 Renormalization Interpretation |
|
|
194 | (1) |
|
Chapter 19 Geometry of the Graph Grid |
|
|
195 | (4) |
|
|
195 | (1) |
|
19.2 The Grid Geometry Lemma |
|
|
195 | (2) |
|
19.3 The Graph Reconstruction Lemma |
|
|
197 | (2) |
|
Chapter 20 The Intertwining Lemma |
|
|
199 | (12) |
|
|
199 | (1) |
|
20.2 A Resume of Transformations |
|
|
200 | (1) |
|
20.3 Injectivity of the Map |
|
|
201 | (1) |
|
20.4 Calculating a Single Point |
|
|
201 | (1) |
|
|
202 | (2) |
|
|
204 | (2) |
|
|
206 | (1) |
|
|
206 | (5) |
Part 5: The Distribution Of Orbits |
|
211 | (54) |
|
Chapter 21 Existence of Infinite Orbits |
|
|
213 | (6) |
|
|
213 | (1) |
|
21.2 Definedness Criterion |
|
|
214 | (1) |
|
21.3 Spacetime Diagrams Revisited |
|
|
214 | (1) |
|
|
215 | (1) |
|
|
216 | (1) |
|
21.6 Sketch of an Alternate Proof |
|
|
217 | (2) |
|
Chapter 22 Existence of Many Large Orbits |
|
|
219 | (8) |
|
|
219 | (1) |
|
22.2 Equidistribution Properties |
|
|
220 | (1) |
|
|
221 | (1) |
|
|
222 | (1) |
|
22.5 Proof of the Main Result |
|
|
222 | (1) |
|
22.6 The Continued Fraction Length |
|
|
223 | (2) |
|
22.7 The End of the Proof |
|
|
225 | (2) |
|
Chapter 23 Infinite Orbits Revisited |
|
|
227 | (12) |
|
|
227 | (1) |
|
23.2 The Approximating Sequence |
|
|
227 | (2) |
|
|
229 | (2) |
|
23.4 The End of the Proof |
|
|
231 | (1) |
|
|
232 | (2) |
|
23.6 Proof of the Box Theorem |
|
|
234 | (1) |
|
23.7 Proof of the Copy Theorem |
|
|
235 | (2) |
|
|
237 | (2) |
|
Chapter 24 Some Elementary Number Theory |
|
|
239 | (6) |
|
|
239 | (1) |
|
|
239 | (3) |
|
|
242 | (3) |
|
Chapter 25 The Weak and Strong Case |
|
|
245 | (8) |
|
|
245 | (1) |
|
25.2 The First Two Statements |
|
|
245 | (1) |
|
|
246 | (1) |
|
25.4 The Mass and Capacity Sequences |
|
|
247 | (1) |
|
25.5 Vertical Intersection Points |
|
|
248 | (1) |
|
25.6 A Matching Criterion |
|
|
249 | (1) |
|
25.7 Verifying the Matching Criterion |
|
|
250 | (3) |
|
|
253 | (12) |
|
|
253 | (1) |
|
26.2 The First Two Statements |
|
|
254 | (1) |
|
26.3 Geometric and Arithmetic Alignment |
|
|
254 | (1) |
|
|
255 | (1) |
|
26.5 Alignment of the Capacity Sequences |
|
|
256 | (1) |
|
|
257 | (3) |
|
26.7 The Mass Sequences: Central Case |
|
|
260 | (2) |
|
26.8 The Mass Sequences: Peripheral Case |
|
|
262 | (1) |
|
26.9 The End of the Proof |
|
|
263 | (2) |
References |
|
265 | (2) |
Index |
|
267 | |