Atnaujinkite slapukų nuostatas

Plant Bioactives and Drug Discovery: Principles, Practice, and Perspectives [Kietas viršelis]

  • Formatas: Hardback, 592 pages, aukštis x plotis x storis: 242x164x34 mm, weight: 980 g
  • Serija: Wiley Series in Drug Discovery and Development
  • Išleidimo metai: 08-Jun-2012
  • Leidėjas: John Wiley & Sons Inc
  • ISBN-10: 047058226X
  • ISBN-13: 9780470582268
Kitos knygos pagal šią temą:
  • Formatas: Hardback, 592 pages, aukštis x plotis x storis: 242x164x34 mm, weight: 980 g
  • Serija: Wiley Series in Drug Discovery and Development
  • Išleidimo metai: 08-Jun-2012
  • Leidėjas: John Wiley & Sons Inc
  • ISBN-10: 047058226X
  • ISBN-13: 9780470582268
Kitos knygos pagal šią temą:

An in-depth exploration of the applications of plant bioactive metabolites in drug research and development

Highlighting the complexity and applications of plant bioactive metabolites in organic and medicinal chemistry, Plant Bioactives and Drug Discovery: Principles, Practice, and Perspectives provides an in-depth overview of the ways in which plants can inform drug research and development. An edited volume featuring multidisciplinary international contributions from acclaimed scientists researching bioactive natural products, the book provides an incisive overview of one of the most important topics in pharmaceutical studies today.

With coverage of strategic methods of natural compound isolation, structural manipulation, natural products in clinical trials, quality control, and more, and featuring case studies on medicinal plants, the book serves as a definitive guide to the field of plant biodiversity as it relates to medicine. In addition, chapters on using natural products as drugs that target specific disease areas, including neurological disorders, inflammation, infectious diseases, and cancer, illustrate the myriad possibilities for therapeutic applications.

Wide ranging and comprehensive, Plant Bioactives and Drug Discovery also includes important information on marketing, regulations, intellectual property rights, and academic-industry collaboration as they relate to plant-based drug research, making it an essential resource for advanced students and academic and industry professionals working in biochemical, pharmaceutical, and related fields.

Recenzijos

In conclusion, this book could be a useful guide not only for PhD students starting their activity in the field of plant metabolites, but also for more advanced researchers looking for a state-of-the-art overview of modern research in this fascinating field.  (ChemMedChem, 1 March 2013)

Contributors xv
Preface xix
1 Natural Products in Drug Discovery: Recent Advances
1(42)
Gordon M. Cragg
Paul G. Grothaus
David J. Newman
1.1 Introduction
1(1)
1.2 The Role of Traditional Medicine and Plants in Drag Discovery
2(2)
1.3 The Role of Marine Organisms in Drug Discovery
4(2)
1.4 The Role of Microorganisms in Drug Discovery: An Historical Perspective
6(2)
1.5 Other Sources
8(1)
1.6 The Importance of Natural Products in Drug Discovery and Development
8(2)
1.7 Classical Natural Sources: Untapped Potential
10(1)
1.8 The Unexplored Potential of Microbial Diversity
10(9)
1.8.1 Improved Culturing Procedures
11(1)
1.8.2 Extraction of Environmental Samples (the Metagenome)
11(1)
1.8.3 Cryptic Clusters in Bacteria and Fungi
12(2)
1.8.4 Marine Microbes
14(1)
1.8.5 Cyanophytes
14(2)
1.8.6 Microbial Symbionts
16(1)
1.8.7 Plant Endophytes
16(1)
1.8.8 Extremophiles
17(1)
1.8.9 Combinatorial Biosynthesis
18(1)
1.9 Development of Drugs From Natural Products: A Multidisciplinary Process
19(7)
1.9.1 Synthesis Based on Natural Products
20(2)
1.9.2 Natural Product--Inspired Combinatorial Synthesis
22(4)
1.10 Conclusions
26(1)
References
27(16)
2 Modern Approaches in the Search for New Active Compounds from Crude Extracts of Natural Sources
43(38)
Emerson F. Queiroz
Kurt Hostettmann
Jean-Luc Wolfender
2.1 Introduction
43(2)
2.2 Selection of the Natural Matrices
45(1)
2.3 Rapid Online Identification and Dereplication
46(1)
2.4 HPLC-Hyphenated Methods for Natural Product Identification
46(11)
2.4.1 HPLC Separation of Crude Extracts
46(3)
2.4.2 LC-PDA
49(1)
2.4.3 HPLC-MS
50(3)
2.4.4 LC-NMR
53(1)
2.4.5 SPE-NMR, Microflow NMR, and NMR with Cryogenized Probes
54(3)
2.5 Studies on Natural Products Using LC-NMR, Microflow NMR, and SPE-NMR
57(10)
2.5.1 Application of Online and At-Line LC-NMR Methods for Dereplication Studies
58(9)
2.6 Application of Direct NMR Methods for Chemical Profiling of Crude Extracts
67(2)
2.6.1 Application of Direct NMR Methods in Quality Control
67(1)
2.6.2 Application of Direct NMR Methods in Metabolomics
68(1)
2.7 Conclusions
69(2)
References
71(10)
3 Natural Products as Lead Compounds in Medicinal Chemistry
81(46)
Eliezer J. Barreiro
Carlos A. M. Fraga
Lidia M. Lima
3.1 Medicinal Chemistry Definition and the Importance of the Lead Compound in Drug Discovery
81(3)
3.2 Natural Products as Drugs
84(12)
3.2.1 Digitalis
84(1)
3.2.2 Alkaloids from Plants as Drugs
85(1)
3.2.3 Penicillin and the Antibiotics Era
86(4)
3.2.4 Anticancer Drugs
90(6)
3.2.5 The Recent Discovery of Ziconotide as a Novel Analgesic Drug
96(1)
3.3 Natural Products as Lead Compound for New Medicines Discovery
96(11)
3.3.1 From Morphine (38) to Synthetic Hypnoanalgesic Drugs
96(1)
3.3.2 Alkaloids as Source of Antimalarial Drugs
97(1)
3.3.3 Ganglionary Blockers: The Drug Class of Amazon Natives
98(2)
3.3.4 Antiviral Drugs from the Sea
100(1)
3.3.5 From Prostaglandins Derived from Caribbean Corals to Misoprostol
100(1)
3.3.6 Antiobesity Drugs Derived from Natural Products
101(1)
3.3.7 The NP Inspiration to the Modern Synthetic Anticancer Class
102(1)
3.3.8 Discovery of Statins: The Top-Class of Drug in the World Market from Fungi
103(4)
3.4 Natural Products as Lead Compounds for New Drug Candidates
107(6)
3.5 Conclusions
113(2)
Acknowledgments
115(1)
References
115(12)
4 The Importance of Structural Manipulation of Natural Compounds in Drug Discovery and Development
127(34)
Arturo San Feliciano
Maria A. Castro
Jose L. Lopez-Perez
Esther del Olmo
4.1 Introduction
127(5)
4.2 Chemomodulation of Podophyllotoxin Cyclolignans
132(8)
4.2.1 Chemomodulation of the Immunosuppressive Activity of Podolignans
135(2)
4.2.2 Chemomodulation of Antineoplastic Potency and Selectivity of Podolignans
137(3)
4.3 Chemoinduction of Bioactivity on Dihydrostilbenoids
140(10)
4.3.1 Chemomodulation of the Vasorelaxant Activity of Phthalazinone IVa
143(3)
4.3.2 Mechanistic and Structure--Activity Relationships Studies on the Vasorelaxant Activity of Phthalazinones
146(4)
4.4 Chemoinduction and Chemomodulation of the Antiparasitic Activity of Stilbenoids
150(2)
4.4.1 Antileishmanial Activity
150(1)
4.4.2 Trypanocidal Activity
151(1)
4.4.3 Antimalarial Activity
151(1)
4.4.4 Studies on the Mechanism of Antiplasmodial Activity and In Vivo Assays
152(1)
4.5 Conclusions
152(1)
Acknowledgments
153(1)
References
153(8)
5 The Action of Plants and their Constituents on the Central Nervous System
161(44)
Fulvio R. Mendes
Giuseppina Negri
Joaquim M. Duarte-Almeida
Ricardo Tabach
Elisaldo A. Carlini
5.1 Introduction
161(1)
5.2 Plants with CNS Depressant Activity
162(7)
5.2.1 Kava-kava: Piper methysticum Forst (Piperaceae)
163(1)
5.2.2 Valerian: Valeriana officinalis L. (Valerianaceae)
164(1)
5.2.3 Chamomile: Matricaria chamomilla L. (Asteraceae)
164(1)
5.2.4 Balm, Lemon Balm: Melissa officinalis L. (Lamiaceae)
165(1)
5.2.5 Hop: Humulus lupulus L. (Moraceae)
165(1)
5.2.6 Tilia: Tilia cordata Mill. and Tilia americana var mexicana (Tiliaceae)
166(1)
5.2.7 Bushy Lippia or Falsa Melissa: Lippia alba Mill (Verbenaceae)
166(1)
5.2.8 Lemon Grass: Cymbopogon citratus (DC.) Stapf (Poaceae)
167(1)
5.2.9 Erythrina: Erythrina mulungu Mart. ex Benth. and Erythrina velutina Wild (Leguminosae)
167(1)
5.2.10 Passiflora genus (Passifloraceae)
168(1)
5.2.11 Essential Oils
168(1)
5.2.12 Other Plants with Depressant Action on the Central Nervous System
169(1)
5.3 Plants with the CNS Stimulant Activity
169(5)
5.3.1 Coffee: Coffea arabica L. (Rubiaceae)
170(1)
5.3.2 Tea Plant: Camellia sinensis L. Kuntze (Theaceae)
171(1)
5.3.3 Guarana: Paullinia cupana Kunth (Sapindaceae)
171(1)
5.3.4 Mate: Ilex paraguariensis St. Hil. (Aquifoliaceae)
172(1)
5.3.5 Ma Huang: Ephedra sinica Stapf (Ephedraceae)
172(1)
5.3.6 Khat: Catha edulis Forsk (Celastraceae)
173(1)
5.3.7 Cola nut: Cola nitida (Vent.) Schott et Endl. or Cola acuminata (Beauv.) Schott et Endl. (Sterculiaceae)
173(1)
5.3.8 Coca: Erythroxylum coca Lam. (Erythroxylaceae)
174(1)
5.4 Plants Used as Antidepressants
174(1)
5.4.1 St. John's wort: Hypericum perforatum L. (Guttiferae)
174(1)
5.4.2 Other Plants with Antidepressant Potential
175(1)
5.5 Adaptogenic Plants
175(3)
5.5.1 Ginseng: Panax ginseng C. A. Meyer (Araliaceae)
176(1)
5.5.2 Siberian Ginseng: Eleutherococcus senticosus (Rupr. and Maxim.) Maxim. (Araliaceae)
177(1)
5.5.3 Damiana: Turnera diffusa Willd. var. aphrodisiaca (Ward.) Urb. (Turneraceae)
177(1)
5.5.4 Other Adaptogens
178(1)
5.6 Plants Used to Treat Neurodegenerative Diseases
178(4)
5.6.1 Ginkgo: Ginkgo biloba L. (Ginkgoaceae)
179(1)
5.6.2 Dong Guai, Chinese Angelica: Angelica sinensis (Oliv.) Diels (Apiaceae)
179(1)
5.6.3 Gotu kola: Centella asiatica (L.) Urban (Apiaceae)
180(1)
5.6.4 Muirapuama: Ptychopetalum olacoides Benth. (Olacaceae)
180(1)
5.6.5 The Cowhage, Velvet Bean: Mucuna pruriens (L.) DC. (Fabaceae)
180(1)
5.6.6 Caffeine and Other Adenosinergic Antagonists as Neuroprotective Agents
181(1)
5.6.7 Antioxidants and Anticholinesterasics of Natural Origin
181(1)
5.7 Plants with the Mind-Altering Activity
182(6)
5.7.1 Nutmeg: Myristica fragrans Houtt (Myristicaceae)
183(1)
5.7.2 Mandrake: Mandragora officinarum L. (Solanaceae)
184(1)
5.7.3 Marihuana, Hemp: Cannabis sativa L. (Cannabaceae)
185(1)
5.7.4 Salvia: Salvia divinorum Eplin et Jativa-M. (Lamiaceae)
185(1)
5.7.5 Peyote: Lophophora williamsii [ Lem.] Coulter (Cactaceae)
186(1)
5.7.6 Jurema: Mimosa tenuiflora [ Willd.] Poir. (Fabaceae)
186(1)
5.7.7 Ayahuasca
187(1)
5.7.8 Other Mind-Altering Drugs
187(1)
5.8 Plants Used Against Drug Dependence
188(1)
5.9 Conclusions
188(3)
Acknowledgments
191(1)
References
191(14)
6 The Role of Natural Products in Discovery of New Anti-Infective Agents with Emphasis on Antifungal Compounds
205(36)
Maximiliano Sortino
Marcos Derita
Laura Svetaz
Marcela Raimondi
Melina Di Liberto
Elisa Petenatti
Mahabir Gupta
Susana Zacchino
6.1 Infectious Diseases and Available Antimicrobial Agents
205(1)
6.2 Fungal Infections and Available Antifungal Agents
206(2)
6.2.1 Fungal Infections
206(1)
6.2.2 Available Antifungal Drugs
206(2)
6.3 The Need of New Antifungal Agents
208(15)
6.3.1 Organisms Recently Investigated as Sources for Antifungal Compounds
208(1)
6.3.2 Plants as Source of Antifungal Metabolites
208(11)
6.3.3 Microorganisms as Source of Antifungal Metabolites
219(1)
6.3.4 Marine Organisms as Sources of Antifungal Metabolites
220(3)
6.4 From Antifungal Compounds to Antifungal Drugs: Some Considerations
223(1)
6.5 Other Strategies Based on Non-targeted Assays
223(3)
6.5.1 Screening of Extracts or Natural Products in Combination with Other Compounds
223(3)
6.6 Strategies Based on Targeted Assays for the Discovery of Antifungal Compounds
226(3)
6.6.1 Natural Products Inhibitors of Fungal Cell-Wall Assembly or Synthesis
226(1)
6.6.2 Natural Products Inhibitors of the Fungal Cell Membrane
227(1)
6.6.3 Natural Products Inhibitors of Virulence Factors
227(1)
6.6.4 Discrimination of Modes of Action of Antifungal Substances by Use of Metabolic Foot Printing
227(1)
6.6.5 New Targets Based on Genomics
228(1)
6.7 Conclusion
229(1)
References
229(12)
7 Antiulcer Agents from Higher Plants
241(22)
Luiz C. Klein-Junior
Jose R. Santin
Sergio F. de Andrade
7.1 Introduction
241(2)
7.2 Medicinal Plants with Antiulcer Activity
243(8)
7.2.1 Maytenus Genus
243(5)
7.2.2 Glycyrrhiza Genus
248(1)
7.2.3 Plants Investigated in our Laboratory
249(2)
7.3 Secondary Metabolites as a Source of Anti-Ulcer Drug Leads
251(5)
7.3.1 Effect on Endogenous Gastroprotective Factors
251(3)
7.3.2 Protective Activity Against Aggressive Factors
254(2)
7.4 Conclusions
256(1)
References
256(7)
8 Recent Progress in the Chemistry and Biology of Paclitaxel (Taxol™) and Related Taxanes
263(74)
Jun Qi
Jielu Zhao
David G. I. Kingston
8.1 Introduction
263(2)
8.2 New Chemistry of Paclitaxel
265(30)
8.2.1 New Taxanes
265(4)
8.2.2 New Chemistry of Paclitaxel
269(11)
8.2.3 Paclitaxel Analogs
280(14)
8.2.4 Biotechnological Production of Paclitaxel
294(1)
8.3 Tubulin Binding
295(11)
8.3.1 Binding Conformation of Paclitaxel to Tubulin
295(3)
8.3.2 Synthetic Efforts to Make Conformationally Restricted Analogs of Paclitaxel
298(8)
8.4 Pharmacology of Paclitaxel
306(12)
8.4.1 Prodrugs and Drug Delivery of Paclitaxel
306(12)
8.5 Conclusions
318(1)
References
319(18)
9 Cancer Chemopreventive Activity of Higher Plants
337(22)
A. Douglas Kinghorn
Yulin Ren
Jie Li
Chung Ki Sung
9.1 Introduction
337(1)
9.2 Potental Cancer Chemopreventive Agents from Selected Dietary Higher Plants
338(10)
9.3 Conclusions
348(1)
Acknowledgments
348(1)
References
348(11)
10 Medicinal Plants and Pharmaceutical Technology
359(36)
Ruth M. Lucinda da Silva
Angelica G. Couto
Tania M.B. Bresolin
10.1 Introduction
359(2)
10.2 Supply of Herbal Materials
361(2)
10.2.1 Cultivation of Medicinal Plants
361(2)
10.3 Harvest and Postharvest Processing
363(2)
10.3.1 Harvest
363(1)
10.3.2 Postharvest Treatment
363(2)
10.3.3 Pulverization
365(1)
10.4 Extraction of Herbal Drugs
365(4)
10.4.1 Extraction
365(1)
10.4.2 Extraction Methods
366(3)
10.4.3 Filtration
369(1)
10.4.4 Clarification
369(1)
10.4.5 Concentration: Partial Removal of the Solvent
369(1)
10.4.6 Decontamination by Ionizing Radiation
369(1)
10.5 Dry Extracts
369(4)
10.6 Phytopharmaceutical Dosage Forms
373(4)
10.6.1 Semisolid Dosage Forms
373(2)
10.6.2 Solid Dosage Forms
375(2)
10.7 Quality Assurance and Quality Control of Herbal Drugs and Phytopharmaceuticals
377(10)
10.7.1 Recommended Procedures of Sampling of Material in Bulk
378(1)
10.7.2 Parameters for Quality Control of Herbal Drugs
378(6)
10.7.3 Parameters for Quality Control of Herbal Preparations
384(1)
10.7.4 Parameters for Quality Control of Herbal Medicinal Product
385(2)
References
387(8)
11 Natural Products in Clinical Trials
395(24)
Sigrun Chrubasik
11.1 The Quality of Clinical Trials
395(1)
11.2 Examples of Clinical Studies with Natural Products
396(17)
11.2.1 An Observational Study with Potato Juice
396(7)
11.2.2 A Randomized Double-Blind Study and a Cohort Study Investigating Two Doses of a Proprietary Willow Bark Extract in Low Back Pain Exacerbations
403(10)
11.3 Evidence of Effectiveness
413(3)
References
416(3)
12 The Influence of Biotic and Abiotic Factors on the Production of Secondary Metabolites in Medicinal Plants
419(34)
Dayana R. Gouvea
Leonardo Gobbo-Neto
Norberto P. Lopes
12.1 Introduction
419(3)
12.2 Biotic and Abiotic Factors that can Affect Biosynthesis and/or Metabolites Accumulation
422(9)
12.2.1 The Atmosphere's Chemical Composition
422(1)
12.2.2 Pathogen Attacks, Mechanic Stimulus, and Herbivory
423(2)
12.2.3 Temperature
425(1)
12.2.4 Ultraviolet Radiation
426(2)
12.2.5 Hydric Stress
428(2)
12.2.6 The Soil Influence and Its Nutrients
430(1)
12.3 Types of Observed Variations on Secondary Metabolites Content
431(8)
12.3.1 Eco-Physiologic Variations on Secondary Metabolites Content
431(1)
12.3.2 Secondary Metabolites Variation According to the Altitude
432(2)
12.3.3 Rhythmical Variations and Ontogenesis
434(5)
12.4 Conclusions
439(1)
References
440(13)
13 Production of Bioactives Compounds: The Importance of Pictet--Spengler Reaction in the XXI Century
453(36)
Pilar Menendez
Ilaria D'Acquarica
Giuliano Delle Monache
Francesca Ghirga
Andrea Calcaterra
Marco Barba
Alberto Macone
Alberto Boffi
Alessandra Bonamore
Bruno Botta
13.1 Introduction
453(2)
13.2 Variants and Applications
455(2)
13.3 Asymmetric Synthesis
457(2)
13.4 Chiral Auxiliary and Enantioselective Catalysis
459(6)
13.5 Enzymatic Catalysis
465(3)
13.6 The Pictet--Spengler Reaction at Present
468(10)
13.6.1 Tetrahydroisoquinoline (THIQ) Family
468(4)
13.6.2 Tetrahydro-β-Carbolines and Indole-Related Alkaloids
472(3)
13.6.3 Novel Scaffolds and New Generation Substrates
475(3)
13.7 Conclusions
478(2)
Acknowledgment
480(1)
References
480(9)
14 Screening Methods for Drug Discovery from Plants
489(10)
Alan L. Harvey
14.1 From Traditional to Phenotypic Screening
489(1)
14.2 Molecular and Cellular Assays
490(2)
14.3 Disease-Specific Assays
492(3)
14.3.1 Anticancer Drug Discovery
492(1)
14.3.2 Diabetes and Metabolic Diseases
493(1)
14.3.3 Antimicrobial Drug Discovery
493(1)
14.3.4 Anti-Inflammatory Drug Discovery
494(1)
14.4 Conclusions
495(1)
References
495(4)
15 Phytotherapeutics -- Intellectual Property Rights, Global Market, and Global Regulatory Guidelines
499(30)
James D. McChesney
Raymond Cooper
Kip Vought
15.1 Intellectual Property Rights
499(2)
15.2 Biodiversity
501(1)
15.3 Global Market Perspectives
502(5)
15.3.1 Veregen®/Polyphenon® E Ointment
504(2)
15.3.2 Omacor
506(1)
15.3.3 Generic Competition
507(1)
15.4 Regulatory Perspectives
507(18)
15.5 Conclusions
525(1)
References
526(3)
16 Cooperation Between the Pharmaceutical Industry and Academic Institutions in Drug Discovery
529(16)
Valdir Cechinel-Filho
Rivaldo Niero
Rosendo A. Yunes
16.1 Introduction
529(1)
16.2 Interaction Between Academic Institutions and the Pharmaceutical Industry
530(4)
16.3 Overview of the Global Pharmaceutical Market
534(1)
16.4 Reorganization of the Pharmaceutical Industry
535(6)
16.4.1 Pharmaceutical Market in Brazil
536(1)
16.4.2 The Behavior of Generic and Phytomedicines in Brazil
537(2)
16.4.3 Acheflan: An Example of Brazilian Phytomedicine
539(2)
16.5 Conclusions
541(1)
Acknowledgments
542(1)
References
542(3)
Index 545
Valdir Cechinel-Filho, PhD, is Professor and Researcher at the Chemical-Pharmaceutical Investigations Center, University of Vale do Itajaķ in Brazil. The editor of five books, seventeen contributed chapters, and over 250 scientific papers and reviews, Dr. Filho is also Associate Editor of Pharmaceutical Biology, a member of the editorial boards of several journals, and a reviewer for many journals, including European Journal of Medicinal Chemistry, Journal of Pharmacy and Pharmacology, Natural Product Research, Planta Medica, and Journal of Agricultural and Food Chemistry.