Atnaujinkite slapukų nuostatas

El. knyga: Plasmonic Catalysis: From Fundamentals to Applications

  • Formatas: PDF+DRM
  • Išleidimo metai: 13-May-2021
  • Leidėjas: Blackwell Verlag GmbH
  • Kalba: eng
  • ISBN-13: 9783527826957
Kitos knygos pagal šią temą:
  • Formatas: PDF+DRM
  • Išleidimo metai: 13-May-2021
  • Leidėjas: Blackwell Verlag GmbH
  • Kalba: eng
  • ISBN-13: 9783527826957
Kitos knygos pagal šią temą:

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

Explore this comprehensive discussion of the foundational and advanced topics in plasmonic catalysis from two leaders in the field  

Plasmonic Catalysis: From Fundamentals to Applications delivers a thorough treatment of plasmonic catalysis, from its theoretical foundations to myriad applications in industry and academia. In addition to the fundamentals, the book covers the theory, properties, synthesis, and various reaction types of plasmonic catalysis. It also covers its applications in reactions including oxidation, reduction, nitrogen fixation, CO2 reduction, and more.  

The book characterizes plasmonic catalytic systems and describes their properties, tackling the integration of conventional methods as well as new methods able to unravel the optical, electronic, and chemical properties of these systems. It also describes the fundamentals of controlled synthesis of metal nanoparticles relevant to plasmonic catalysis, as well as practical examples thereof. 

Plasmonic Catalysis covers a wide variety of other practical topics in the field, including hydrogenation reactions and the harvesting of LSPR-excited charge carriers. Readers will also benefit from the inclusion of:  

  • A thorough introduction to plasmonic catalysis, a theory of plasmons for catalysis and mechanisms, as well as optical properties of plasmonic-catalytic nanostructures 
  • An exploration of the synthesis of plasmonic nanoparticles for photo and electro catalysis, as well as plasmonic catalysis towards oxidation reactions and hydrogenation reactions 
  • Discussions of plasmonic catalysis for multi-electron processes and artificial photosynthesis and N2 fixation 
  • An examination of control over reaction selectivity in plasmonic catalysis  

Perfect for catalytic chemists, materials scientists, photochemists, and physical chemists, Plasmonic Catalysis: From Fundamentals to Applications will also earn a place in the libraries of physicists who seek a one-stop resource to enhance their understanding of applications in plasmonic catalysis. 

Prologue x
Naomi J. Halas
Peter Nordlander
Introduction xiii
Pedro H.C. Camargo
Emiliano Cortes
1 Theory of Plasmonic Excitations
1(1)
Lucas V. Besteiro
Xiang-Tian Kong
Zhiming M. Wang
Alexander O. Govorov
1.1 Introduction
1(4)
1.2 Dynamics of Plasmon Excitation and Decay
5(6)
1.2.1 Collective Charge Dynamics
5(3)
1.2.2 Confined Systems
8(1)
1.2.3 Plasmonic Decay Channels
9(2)
1.3 Hot Electrons: Energy Distribution and Mechanisms of Generation
11(4)
1.4 Charge Transfer Mechanisms Associated with Plasmons
15(1)
1.4.1 Indirect Hot Carrier Injection
16(3)
1.4.2 Direct HE Injection
19(1)
1.5 Plasmonic Near-Field Enhancement
19(3)
1.6 Plasmonic Scattering
22(2)
1.7 Photoheating
24(3)
1.8 Example Applications
27(3)
1.9 Outlook
30(7)
Acknowledgements
30(1)
References
30(7)
2 Characterization and Properties of Plasmonic-Catalytic Nanostructures from the Atomic Scale to the Reactor Scale
37(1)
Briley B. Bourgeois
Dayne F. Swearer
Jennifer A. Dionne
2.1 Overview
37(2)
2.2 Ensemble Studies and Mechanistic Mysteries
39(1)
2.2.1 Monitoring an Ensemble Reaction
40(2)
2.2.2 Ensemble Experiments
42(3)
2.2.3 Room for Growth in Ensemble Characterization Procedures
45(2)
2.3 Single/Subparticle Measurements - Toward Uncovering Mechanisms
47(11)
2.3.1 Diffraction-Limited Optical Characterization Techniques
48(2)
2.3.2 Dark-Field Spectroscopy/Microscopy
50(2)
2.3.3 Super-Resolution Microscopy - Beating the Diffraction Limit
52(2)
2.3.4 Electron Microscopy
54(2)
2.3.5 A Note on Computational Tools
56(2)
2.4 Ultrafast Spectroscopy and Emerging Techniques - A Promising Future
58(5)
2.4.1 Ultrafast Spectroscopy and Surface-Enhanced Raman Scattering
58(2)
2.4.2 Tip-Enhanced Raman Spectroscopy
60(2)
2.4.3 X-Ray and Ultrafast Electron Microscopy
62(1)
2.5 Outlook
63(8)
Acknowledgments
64(1)
References
64(7)
3 Synthesis of Plasmonic Nanoparticles for Photo- and Electrocatalysis
71(1)
Wei Xie
Kaifu Zhang
Roland Grzeschik
Sebastian Schlucker
3.1 Introduction
71(1)
3.2 Monometallic Plasmonic Nanoparticles
72(1)
3.2.1 Au Nanoparticles
72(1)
3.2.1.1 Au Quasispheres
73(1)
3.2.1.2 Au Nanorods
74(1)
3.2.1.3 Au Nanocubes
74(1)
3.2.1.4 Au Nanotriangles
75(2)
3.2.1.5 Au Nanostars
77(1)
3.2.2 Ag Nanoparticles
78(1)
3.2.2.1 Ag Quasispheres
78(1)
3.2.2.2 Ag Nanowires and Nanorods
79(1)
3.2.2.3 Ag Nanocubes
80(1)
3.2.2.4 Ag Nanoplates with Long Narrow Gaps
81(1)
3.2.3 Cu Nanoparticles
82(1)
3.2.3.1 Cu Quasispheres
82(1)
3.2.3.2 Cu Nanorods
83(1)
3.2.3.3 Cu Nanocubes
83(1)
3.2.4 Al Nanoparticles
83(1)
3.2.4.1 Al Nanosheets
83(1)
3.2.4.2 Al Nanocrystals
83(1)
3.2.4.3 Al Nanorods
84(1)
3.3 From Monometallic NP Films to Composite NP Architectures
85(7)
3.3.1 Nanoparticle Monolayers
86(1)
3.3.2 Superstructures
87(2)
3.3.3 Other Structures
89(3)
3.4 SERS Studies of Photo- and Electrocatalysis
92(17)
3.4.1 Photocatalysis
92(1)
3.4.1.1 Oxidation of Aniline
92(1)
3.4.1.2 Reduction of Nitroarenes
93(1)
3.4.1.3 Dehalogenation
94(2)
3.4.2 Electrocatalysis
96(1)
3.4.2.1 Hydrogen Evolution Reaction
96(1)
3.4.2.2 Oxygen Evolution Reaction
96(1)
3.4.2.3 Oxygen Reduction Reaction
97(2)
3.4.2.4 Electrocatalytic C02 Reduction
99(2)
References
101(8)
4 Plasmonic Catalysis Toward Hydrogenation Reactions
109(1)
Gareth D. Price
Alexandra Gelle
Audrey Moores
4.1 Introduction
109(1)
4.2 Hydrogenation of Alkenes and Alkynes
110(5)
4.3 Hydrogenation of Aldehydes and Ketones
115(5)
4.4 Reduction of Nitro Compounds
120(1)
4.4.1 Hydrogenation of Nitro Groups
120(6)
4.4.2 Reductive Coupling of Nitroaromatics Compounds
126(3)
4.5 Outlook
129(8)
References
130(7)
5 Plasmonic Catalysis, Photoredox Chemistry, and Photosynthesis
137(1)
Sungju Yu
Prashant K. Jain
5.1 Introduction
137(1)
5.2 Energy Conversion Following Plasmonic Excitation
138(1)
5.2.1 Plasmon-Induced Generation of Charge Carriers
138(1)
5.2.2 Extraction of Charge Carriers Generated by Plasmonic Excitation
139(1)
5.2.3 Mechanisms of Charge Transfer
139(2)
5.2.4 Energetics and Kinetics of Carrier Harvesting
141(3)
5.2.5 Chemical Potential of Plasmonic Excitations
144(2)
5.3 Plasmon-Excitation-Assisted Charge Transfer Reactions
146(2)
5.3.1 Photo-Driven Growth of Ag and AuNPs
146(1)
5.3.2 Switching of Redox States
146(2)
5.4 Plasmon-Excitation-Driven Processes Relevant for Fuel Generation
148(11)
5.4.1 H20 Splitting
148(1)
5.4.2 C02 Reduction
149(4)
5.4.3 C02 Reduction with a Reaction Promoter
153(4)
5.4.4 Thermodynamic Insights into Plasmon-Excitation-Driven C02 Reduction
157(2)
5.5 Outlook
159(6)
Acknowledgments
162(1)
References
162(3)
6 Plasmonic Catalysis for N2 Fixation
165(1)
Tomoya Oshikiri
Hiroaki Misawa
6.1 Introduction
165(1)
6.2 Reaction Mechanism and Evaluation of N2 Fixation
166(1)
6.2.1 Principles of Plasmon-Enhanced NH3 Photosynthesis
166(2)
6.2.2 Associative and Dissociative Pathways of N2 Fixation
168(1)
6.2.3 Analysis and Quantification of Plasmon-Induced NH3 Evolution
168(2)
6.3 N2 Fixation Through NFE
170(1)
6.4 N2 Fixation Through DHEI into N2 Molecules
170(4)
6.5 HET from a Plasmonic Metal to a Semiconductor
174(12)
6.5.1 N2 Fixation Through HET with Sacrificial Electron Donors
174(6)
6.5.2 N2 Fixation Through HET Using Water as an Electron Donor
180(6)
6.6 Outlook
186(5)
References
187(4)
7 Untangling Thermal and Nonthermal Effects in Plasmonic Photocatalysis
191(1)
Xueqian Li
Lie Liu
Henry O. Everitt
7.1 Introduction
191(2)
7.2 Tools and Techniques for Product Analysis and Temperature Measurement
193(7)
7.2.1 Gas Phase Reaction Chamber
194(1)
7.2.2 Temperature Measurement
195(2)
7.2.3 Thermal Gradients
197(1)
7.2.4 Thermocouple Diameter
198(1)
7.2.5 Additional Thermometry Methods in Plasmonic Photocatalysis
199(1)
7.3 Photothermal Catalysis
200(7)
7.3.1 Ru-based Catalysts for NH3 Synthesis
200(1)
7.3.2 Thermal Gradients in Ru Catalysts
201(3)
7.3.3 Intensity- and Wavelength-Dependent Behavior
204(1)
7.3.4 Direct and Indirect Illumination
204(3)
7.4 Discriminating Thermal and Nonthermal Effects
207(13)
7.4.1 Rhodium Catalysts for C02 Hydrogenation
209(2)
7.4.2 Plasmonic Photocatalytic Reduction of C02
211(3)
7.4.3 Unheated, Light-Only Photocatalysis
214(2)
7.4.4 Light Intensity Dependence of Heated Photocatalysts
216(1)
7.4.5 Nonthermal Photocatalytic Behaviors
217(3)
7.5 Outlook
220(11)
References
222(9)
8 Earth-Abundant Plasmonic Catalysts
231(1)
Hefeng Cheng
Yasutaka Kuwahara
Hiromi Yamashita
8.1 Introduction
231(5)
8.2 MoO3-x- and WO3-x-Based Plasmonic Catalysts
236(5)
8.3 Molybdenum and Tungsten Bronzes-Based Plasmonic Catalysts
241(8)
8.4 Cu2-x (E = S, Se, Te)-Based Plasmonic Catalysts
249(2)
8.5 Outlook
251(10)
References
254(7)
9 Plasmon-Enhanced Electrocatalysis
261(1)
Subin Yu
Nur Aqlili Riana Che Mohamad
Minju Kim
Yoonseo Nah
Filipe Marques Mota
Dong Ha Kim
9.1 Introduction
261(1)
9.2 Principles and Mechanism
262(6)
9.2.1 Introducing Plasmonic Nanostructures in Electrocatalytic Systems
262(1)
9.2.2 Disentangling Mechanism Pathways
263(4)
9.2.3 Defining Approaches
267(1)
9.3 Plasmon-Enhanced Electrocatalytic Systems
268(19)
9.3.1 Water Splitting: Hydrogen and Oxygen Evolution
269(5)
9.3.2 Fuel Cells: Oxygen Reduction and Alcohols Electro-oxidation
274(9)
9.3.3 The Multielectron CO2 Reduction to Valuable Products
283(4)
9.4 Outlook
287(8)
Acknowledgements
288(1)
References
288(7)
10 Plasmonic Metal/Semiconductor Heterostructures
295(1)
Wenxiao Guo
Jiawei Huang
Wei David Wei
10.1 Introduction
295(1)
10.2 Working Principles
295(4)
10.2.1 Formation of the Schottky Barrier at the Metal/Semiconductor Interface
296(1)
10.2.2 Electron Transfer Across the Schottky Barrier
297(2)
10.3 Fabrication of Metal/Semiconductor Heterostructures
299(3)
10.3.1 Colloidal Deposition Method
299(1)
10.3.2 Deposition-Precipitation Method
300(1)
10.3.3 Photodeposition Method
301(1)
10.4 Design of Metal/Semiconductor Heterostructures
302(6)
10.4.1 Design of Semiconductor Materials
302(1)
10.4.1.1 Optimization of the Schottky Barrier Height
302(1)
10.4.1.2 Optimization of Charge Transport in Semiconductors
303(1)
10.4.1.3 Catalytic Activity of Semiconductors
304(1)
10.4.2 Design of Metal Nanoparticles
305(1)
10.4.2.1 Morphology of Metal Nanoparticles
305(1)
10.4.2.2 Materials of Metal Nanoparticles
305(1)
10.4.3 Design of Metal/Semiconductor Interfaces
306(1)
10.4.3.1 Optimization of the Interfacial Electron Transfer
307(1)
10.4.3.2 Optimization of Interfacial Active Sites
308(1)
10.5 Photocatalytic Reactions Mediated by Plasmonic Heterostructures
308(4)
10.5.1 Water Splitting
308(3)
10.5.2 Organic Transformation
311(1)
10.5.3 Other Reactions
312(1)
10.6 Outlook
312(11)
Acknowledgments
313(1)
References
313(10)
Epilogue 323(4)
Suljo Link
Index 327
Pedro H.C. Camargo is Professor in the Department of Chemistry at the University of Helsinki, Finland. He serves as an Editor of the Journal of Materials Science. His research foci are on the synthesis of nanomaterials for nanocatalysis and plasmonic nanocatalysis.

Emiliano Cortés is Professor at the Physics Faculty in the University of Munich (LMU) in Germany and the academic lead of the Plasmonic and Photonic Chemistry Group. He is also Visiting Researcher in the Chemistry Department at University College London and in the Physics Department at Imperial College London, in the United Kingdom.