Atnaujinkite slapukų nuostatas

El. knyga: Plasmonic Nanoelectronics and Sensing

Kitos knygos pagal šią temą:
Kitos knygos pagal šią temą:

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

Plasmonic nanostructures provide new ways of manipulating the flow of light with nanostructures and nanoparticles exhibiting optical properties never before seen in the macro-world. Covering plasmonic technology from fundamental theory to real world applications, this work provides a comprehensive overview of the field. • Discusses the fundamental theory of plasmonics, enabling a deeper understanding of plasmonic technology • Details numerical methods for modeling, design and optimization of plasmonic nanostructures • Includes step-by-step design guidelines for active and passive plasmonic devices, demonstrating the implementation of real devices in the standard CMOS nanoscale electronic-photonic integrated circuit to help cut design, fabrication and characterisation time and cost • Includes real-world case studies of plasmonic devices and sensors, explaining the benefits and downsides of different nanophotonic integrated circuits and sensing platforms. Ideal for researchers, engineers and graduate students in the fields of nanophotonics and nanoelectronics as well as optical biosensing.

Covering plasmonic technology from fundamental theory and numerical methods to real fabricated components and devices for nanophotonics, nanoelectronic and sensing applications. Ideal for researchers, engineers and graduate students in the fields of nanophotonics and nanoelectronics as well as optical biosensing.

Daugiau informacijos

A comprehensive overview, from fundamental theory and numerical methods to the design of real plasmonic structures for nanoelectronic and sensing applications.
List of contributors
ix
Preface xi
1 Fundamentals of plasmonics
1(19)
1.1 Electromagnetic field equations
1(5)
1.1.1 Maxwell's equations in a medium
1(1)
1.1.2 Material equations
2(2)
1.1.3 Temporal and spatial dispersion in metals
4(2)
1.2 The local-response approximation
6(8)
1.2.1 The energy of an electromagnetic field in metals
6(1)
1.2.2 Properties of the complex dielectric permittivity
7(1)
1.2.3 The conduction-electron contribution
8(2)
1.2.4 The bound-charge contribution
10(4)
1.3 Electromagnetic fields in metals
14(6)
1.3.1 Plasmon classification
14(3)
1.3.2 Bulk plasmon modes
17(1)
1.3.3 Surface plasmon modes
18(1)
References
19(1)
2 Plasmonic properties of metal nanostructures
20(47)
2.1 Plasmonic modes in spherical geometry
20(15)
2.1.1 Spherical harmonics
20(2)
2.1.2 Electromagnetic fields in vector spherical harmonics
22(1)
2.1.3 Spherical plasmons
23(3)
2.1.4 Scattering by a sphere
26(2)
2.1.5 Cross-sections
28(4)
2.1.6 A multilayer sphere
32(3)
2.2 Plasmonic modes in cylindrical geometry
35(14)
2.2.1 Cylindrical harmonics
35(1)
2.2.2 Electromagnetic fields in vector cylindrical harmonics
36(2)
2.2.3 Cylindrical plasmon polaritons
38(2)
2.2.4 Scattering by a cylinder
40(3)
2.2.5 Cross-sections per unit length
43(3)
2.2.6 Multilayer cylinder
46(3)
2.3 Plasmonic modes in planar geometry
49(18)
2.3.1 Planar harmonics
50(1)
2.3.2 Electromagnetic fields in vector planar harmonics
51(1)
2.3.3 Planar plasmon polaritons
52(4)
2.3.4 Reflection and transmission by a slab
56(2)
2.3.5 Reflectance, transmittance, and absorptance
58(2)
2.3.6 A multilayer slab
60(5)
References
65(2)
3 Frequency-domain methods for modeling plasmonics
67(32)
3.1 Introduction
67(1)
3.2 Rigorous coupled-wave analysis
68(19)
3.2.1 Formulations
68(11)
3.2.2 Modeling 2D and 3D plasmonic nanostructures with RCWA
79(8)
3.3 A semi-analytical method for near-field coupling study
87(8)
3.3.1 Superlens and subwavelength imaging
87(1)
3.3.2 Object--superlens coupling
87(8)
3.4 Summary
95(4)
References
95(4)
4 Time-domain simulation for plasmonic devices
99(40)
4.1 Introduction
99(2)
4.2 Formulation
101(19)
4.2.1 A model for metals
101(6)
4.2.2 A model for solid-state materials
107(4)
4.2.3 Simulation of an MSM waveguide and a microcavity
111(3)
4.2.4 SPP generation using an MSM microdisk
114(6)
4.3 Surface plasmon generation in semiconductor devices
120(5)
4.4 Implementation of the LD model on a GPU
125(9)
4.4.1 GPU implementation
127(3)
4.4.2 Applications
130(4)
4.5 Summary
134(5)
References
135(4)
5 Passive plasmonic waveguide-based devices
139(41)
5.1 Introduction
139(3)
5.2 The vertical hybrid Ag--SiO2--Si plasmonic waveguide and devices based on it
142(17)
5.2.1 Theoretical background
142(1)
5.2.2 The dependence of the propagation characteristics on the thickness of the SiO2 stripe
143(1)
5.2.3 The dependence of the propagation characteristics on the dimensions of the Si nanowire
144(3)
5.2.4 The propagation characteristics of the vertical hybrid, metal--insulator--metal, and dielectric-loaded plasmonic waveguides
147(2)
5.2.5 Waveguide couplers
149(2)
5.2.6 Waveguide bends
151(2)
5.2.7 Power splitters
153(2)
5.2.8 Ring resonator filters
155(4)
5.3 Complementary metal-oxide-semiconductor compatible hybrid plasmonic waveguide devices
159(21)
5.3.1 CMOS-compatible plasmonic materials
160(1)
5.3.2 Vertical hybrid Cu--SiO2--Si plasmonic waveguide devices
161(4)
5.3.3 Horizontal hybrid Cu--SiO2--Si--SiO2--Cu plasmonic waveguide devices
165(11)
References
176(4)
6 Silicon-based active plasmonic devices for on-chip integration
180(37)
6.1 Introduction
180(2)
6.2 Plasmonic modulators based on horizontal MISIM plasmonic waveguides
182(9)
6.2.1 The operating principle
182(4)
6.2.2 Experimental demonstration
186(3)
6.2.3 Issues and possible solutions
189(2)
6.3 Athermal ring modulators based on vertical metal--insulator--Si hybrid plasmonic waveguides
191(10)
6.3.1 Device structure
191(1)
6.3.2 Device properties
192(8)
6.3.3 Tolerance
200(1)
6.4 Schottky-barrier plasmonic detectors
201(7)
6.4.1 Device structure
201(1)
6.4.2 SPP power absorption
202(2)
6.4.3 Quantum efficiency
204(3)
6.4.4 Dark current and speed
207(1)
6.5 Metallic nanoparticle-based detectors
208(5)
6.5.1 Device structure
208(1)
6.5.2 LSPR-enhanced absorption
208(2)
6.5.3 Experimental demonstration
210(2)
6.5.4 Issues and solutions
212(1)
6.6 Conclusions
213(4)
References
214(3)
7 Plasmonic biosensing devices and systems
217(32)
7.1 Introduction
217(2)
7.2 Plasmonic sensing mechanisms
219(3)
7.2.1 Resonance conditions for sensing
219(1)
7.2.2 Sensitivity and figure of merit
220(2)
7.3 Plasmonic biosensing systems
222(6)
7.3.1 Sensor structures
222(4)
7.3.2 Modulation methods
226(1)
7.3.3 Bio-functionalization formats
227(1)
7.4 Design methods
228(5)
7.4.1 The N-layer model
228(1)
7.4.2 The FEM model
229(4)
7.5 Plasmonic biosensor design examples
233(16)
7.5.1 Graphene-based biosensor design
233(4)
7.5.2 Messenger RNA detection
237(4)
7.5.3 Point-of-care clinical screening of PSA
241(6)
References
247(2)
Index 249
Er-Ping Li is a Principal Scientist and Director of Nanophotonics and Electronics at the Institute of High Performance Computing, A*STAR, Singapore, and is also Professor in Radio Frequency and Nanoelectronics at Zhejiang University, China. He is a Fellow of the IEEE and of the Electromagnetics Academy, USA. Hong-Son Chu is a Scientist at the Nanophotonics and Electronics Department of the Institute of High Performance Computing, A*STAR, Singapore. He is a member of the Optical Society of America, the IEEE, and the Materials Research Society.