Atnaujinkite slapukų nuostatas

Plasmonic Optical Fiber Biosensors Unabridged edition [Kietas viršelis]

  • Formatas: Hardback, 410 pages, aukštis x plotis: 254x178 mm
  • Išleidimo metai: 30-Apr-2023
  • Leidėjas: Artech House Publishers
  • ISBN-10: 1630819719
  • ISBN-13: 9781630819712
Kitos knygos pagal šią temą:
  • Formatas: Hardback, 410 pages, aukštis x plotis: 254x178 mm
  • Išleidimo metai: 30-Apr-2023
  • Leidėjas: Artech House Publishers
  • ISBN-10: 1630819719
  • ISBN-13: 9781630819712
Kitos knygos pagal šią temą:
This book provides a thorough vision of the current trends in plasmonic optical fiber biochemical sensing. It gathers the most recent technological information and shows the maturity reached by the different subsequent technologies. Demonstrating roadmaps for the design process and implementation of plasmonic optical fiber biochemical sensors, the book bridges the gap between theory and application. With this philosophy, understanding key physical properties is of paramount importance for the efficient design of sensing platforms that will meet target specifications.

 

You will learn about the role of the fiber configuration and the functional coating on the properties of the resulting optrodes. You will also get an encompassing overview on all optical fiber configurations used for plasmonic sensing thus far, especially on the progress made over the last decade and rendering the technology compatible for use in real conditions. The book presents both fundamental aspects and advanced applications while focusing on recent and emerging fields of research, such as the use of tilted fiber Bragg gratings, the integration of sensors in situ, the use of smart interrogation techniques, and much more.

 

This is a unique reference for both beginners and experts in optical fiber-based sensors, especially for industrial engineers working in biophotonics and biochemical sensing, as it presents state-of-the-art design procedures and sensing features. The books theoretical background combined with recent advances of plasmonic-based optical fiber technologies also make it highly beneficial for all researchers, academics, and students specialized or interested in this flourishing and promising discipline.
Foreword ix
Acknowledgments xi
Chapter 1 Introduction
1(10)
1.1 Rationale: Optical Fibers Versus Kretschmann Prism
1(4)
1.2 Positioning of the Book Content
5(1)
1.3 Content Review
6(1)
1.4 Practical Considerations
7(4)
Chapter 2 Physical Concepts of Surface Plasmon Sensing
11(38)
2.1 Mathematical Formalism
11(10)
2.1.1 Maxwell Equations
13(1)
2.1.2 Constitutive Equations
13(1)
2.1.3 Boundary Conditions
13(1)
2.1.4 Wave Equations
14(4)
2.1.5 Plasmons at a Single Interface
18(3)
2.2 Excitation of Surface Plasmons
21(3)
2.3 Long-Range Surface Plasmons
24(1)
2.4 Prism Configurations and Optical Fiber Counterpart
25(7)
2.5 Localized Surface Plasmons
32(3)
2.6 Plasmonic Materials
35(4)
2.7 Signal Analysis and Performance Indicators
39(10)
2.7.1 Signal Analysis
39(1)
2.7.2 Performance Indicators
40(6)
References
46(3)
Chapter 3 Multimode Optical Fiber Platforms
49(36)
3.1 Light Propagation in Optical Fibers
49(14)
3.1.1 Geometrical Approach
50(4)
3.1.2 Electromagnetism Approach
54(9)
3.2 Overview of Multimode Optical Fibers
63(1)
3.3 Unclad or Etched Configurations
64(9)
3.4 Tapered Configurations
73(2)
3.5 D-Shaped Configurations
75(2)
3.6 U-Bent Configurations
77(1)
3.7 Interferometers: Hetero-Core Structures
78(2)
3.8 Fiber End Facets
80(5)
References
81(4)
Chapter 4 Single-Mode Optical Fiber Platforms
85(40)
4.1 Overview of Single-Mode Optical Fibers
85(6)
4.2 Etched, Tapered, and D-Shaped Configurations
91(3)
4.3 Thinned Uniform Fiber Bragg Grating Configurations
94(9)
4.3.1 Basics of Uniform Fiber Bragg Gratings
94(2)
4.3.2 Temperature Sensitivity of Uniform FBGs
96(1)
4.3.3 Axial Strain Sensitivity of Uniform FBGs
97(2)
4.3.4 Pressure Sensitivity of Uniform FBGs
99(1)
4.3.5 Transverse Strain Sensitivity of Uniform FBGs
100(1)
4.3.6 Refractometric Sensitivity of Uniform FBGs
101(2)
4.4 Weakly and Highly Tilted Fiber Bragg Gratings
103(12)
4.4.1 Weakly Tilted Fiber Bragg Gratings
103(9)
4.4.2 Excessively Tilted Fiber Bragg Gratings
112(3)
4.5 Eccentric Fiber Bragg Gratings
115(3)
4.6 Long-Period Fiber Gratings
118(7)
References
121(4)
Chapter 5 Specialty Optical Fiber Platforms
125(26)
5.1 Polarization-Maintaining Optical Fibers
125(7)
5.1.1 Introduction to the Concept of Polarization-Maintaining Optical Fibers
125(5)
5.1.2 Use of Polarization-Maintaining Optical Fibers for Plasmonic Excitation
130(2)
5.2 Microstructured Optical Fibers
132(6)
5.3 Polymer Optical Fibers
138(4)
5.4 Bioresorbable Optical Fibers
142(1)
5.5 Fibers Incorporated with Metal Nanoparticles
143(8)
References
145(6)
Chapter 6 Immunosensors
151(30)
6.1 Introduction to Biochemical Sensors
151(4)
6.2 Antibodies
155(6)
6.3 Nanobodies
161(2)
6.4 Affimers
163(1)
6.5 Application of Immunosensors
163(12)
6.5.1 Immobilization Strategies
163(4)
6.5.2 Immunosensors
167(5)
6.5.3 SPR Signal Analysis
172(3)
6.6 Conclusion
175(6)
References
175(6)
Chapter 7 Nucleic Acid-Based Receptors (DNA and RNA)
181(24)
7.1 DNA Receptors
181(9)
7.1.1 Binding DNA Receptors on Glass
183(1)
7.1.2 Binding DNA Receptors on Plastic
184(1)
7.1.3 Binding DNA Receptors on Metals
184(1)
7.1.4 Binding DNA Receptors on Polymeric Materials
185(3)
7.1.5 DNA Spot Arrays and Microstructures
188(1)
7.1.6 Design and Synthesis of Specific DNA 2-D/3-D Structures
189(1)
7.2 RNA/miRNA Receptors
190(1)
7.3 Aptamers
191(2)
7.4 Applications of Nucleic Acid-Based Biosensors
193(7)
7.4.1 Hybridization/Complementary Strand Detection
193(1)
7.4.2 Protein, Toxin, and Organic Compound Detection
194(1)
7.4.3 Cell Detection
194(5)
7.4.4 Ion Detection
199(1)
7.5 Conclusion
200(5)
References
200(5)
Chapter 8 Other Bioreceptors for Plasmonic Biosensors
205(24)
8.1 MIPs
205(3)
8.2 Enzymes
208(9)
8.2.1 Enzymatic Biosensors
208(3)
8.2.2 Glucose Biosensors
211(3)
8.2.3 Snapshot of Other Enzymatic Biosensors
214(1)
8.2.4 The Case of ELISA
215(1)
8.2.5 Immobilization of Enzymes on Different Surfaces
216(1)
8.2.6 Optical Fiber-Based Enzymatic Biosensors
217(1)
8.3 Proteins
217(2)
8.3.1 Anchor Proteins (A, G, L)
217(1)
8.3.2 Protein/Antibodies or Protein/Protein Interactions
218(1)
8.4 Cells
219(1)
8.5 Additional Layers and Matrices
220(1)
8.5.1 Hydrogels
220(1)
8.5.2 Dextran Matrices
220(1)
8.6 Optical Fiber-Based Applications
221(8)
References
223(6)
Chapter 9 Combined Plasmonic Sensors
229(24)
9.1 Electro-Plasmonics
229(4)
9.1.1 Voltammetry
230(1)
9.1.2 Conductometry
231(1)
9.1.3 Amperometry
231(1)
9.1.4 Potentiometry
232(1)
9.1.5 Combination with Plasmonic Optical Fiber Sensing
233(1)
9.2 Magneto-Plasmonics
233(4)
9.3 Fluorescence-Based and Quantum Dot-Based Plasmonics
237(4)
9.4 Raman Scattering
241(4)
9.5 Ultrasound and Radio-Plasmonics
245(8)
References
248(5)
Chapter 10 Current Developments and Future Challenges
253(20)
10.1 Integrated Optical Fiber Devices
253(8)
10.1.1 Microfluidics
253(3)
10.1.2 Optofluidics
256(1)
10.1.3 Smartphone-Based Optical Fiber Sensors
257(4)
10.1.4 Multiplexing
261(1)
10.2 Towards Commercial Practices
261(4)
10.3 POC Sensing and Related Innovation
265(2)
10.4 Towards In Situ Sensing
267(3)
10.5 Artificial Intelligence-Assisted Sensing
270(2)
10.6 From Sensing to Imaging
272(1)
References 273(4)
Conclusion 277(2)
Acronyms and Abbreviations 279(6)
About the Authors 285(2)
Index 287