Atnaujinkite slapukų nuostatas

El. knyga: Plasmonics in Chemistry and Biology

  • Formatas: 322 pages
  • Išleidimo metai: 13-May-2019
  • Leidėjas: Pan Stanford Publishing Pte Ltd
  • Kalba: eng
  • ISBN-13: 9780429858680
  • Formatas: 322 pages
  • Išleidimo metai: 13-May-2019
  • Leidėjas: Pan Stanford Publishing Pte Ltd
  • Kalba: eng
  • ISBN-13: 9780429858680

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

Over the past decade, plasmonic nanoparticles have been the subject of extensive research, owing to their remarkable optical properties. These properties arise from a collective oscillation of the conductive electrons at the nanoparticle surface under light irradiation, known as localized surface plasmon (LSP). LSP is characterized by (i) a strong absorption and scattering of the light depending on the geometrical parameters of the nanoparticles and (ii) a strong amplification of the local field in the vicinity of the nanoparticles. 

Quite recently, it was shown that the activation and the initiation of chemical reactions or physical processes can be facilitated using LSP excitation. Such exploitation presents two main advantages: an enhanced yield and a fine control of chemical reactions at the nanoscale. These topics have become very active and are in line with molecular plasmonics. This book explores this new field and provides a broad view on the exploitation of plasmonics in chemical and biological fields.

Preface xiii
1 Plasmon-Driven Surface Functionalization of Gold Nanoparticles 1(32)
Mai Nguyen
Inga Tijunelyte
Marc Lamy de la Chapelle
Claire Mangeney
Nordin Felidj
1.1 Plasmon-Induced Surface Functionalization by Diazonium Salts
2(20)
1.1.1 Grafting by Laser Heating and Threshold Energy Dose Eth
3(3)
1.1.2 Plasmon-Induced Grafting on 1D Structure Arrays of Gold Nanostripes
6(5)
1.1.3 Plasmon-Driven Grafting on 2D Structure Array of Gold Nanorods
11(4)
1.1.3.1 Description of the gold nanorod array
11(1)
1.1.3.2 Plasmon-driven grafting on gold nanorod array
12(3)
1.1.4 Plasmon-Driven Multi-Functionalization of Gold Nanodisks Array
15(6)
1.1.5 Conclusion
21(1)
1.2 Plasmon-Initiated Surface Functionalization by Thiol-Ene "Click" Chemistry
22(11)
1.2.1 Fabrication of Substrates
22(1)
1.2.2 In situ Thiol-Ene Click Reaction
23(5)
1.2.3 Conclusion
28(5)
2 Concept and Development of Multi-Functional Hybrid Systems: Photoswitchable and Thermotunable Plasmonic Materials 33(24)
Mai Nguyen
Leila Boubekeur-Lecaque
Claire Mangeney
Stephanie Lau-Truong
Alexandre Chevillot-Biraud
Francois Maurel
Nordin Felick
Jean Aubard
2.1 Introduction
33(4)
2.2 Elaboration and Properties of the Multifunctional Hybrid System
37(5)
2.2.1 Preparation of Gold Nanoparticle Arrays
37(1)
2.2.2 Preparation of GNPs Arrays Covered by PNIPAM with AB Chromophore End Groups (GNPA-PNIPAM-AB)
37(2)
2.2.3 AFM and Optical (Extinction) Characterization of the Thermosensitive Properties of the GNPA-PNIPAM-AB System
39(3)
2.3 Reversible Changes of the LSP Resonance of GNPA-PNIPAM-AB Upon cis/trans Isomerization of Azobenzene
42(2)
2.4 SERS Experiments of GNPA-PNIPAM-AB at Various Temperatures and upon AB cis/trans Isomerization
44(8)
2.4.1 ThermoInduced Reversible Changes of Azobenzene SERS Intensity
44(4)
2.4.2 SERS Intensity Changes upon cis/trans Isomerization of Azobenzene
48(4)
2.5 Conclusion
52(5)
3 Reversible Adsorption of Biomolecules on Thermosensitive Polymer-Coated Plasmonic Nanostructures 57(14)
Nguyen Thi Tuyet Mai
Jean Aubard
Claire Mangeney
Nordin Felidj
3.1 Introduction
57(2)
3.2 Experimental
59(2)
3.2.1 Materials
59(1)
3.2.2 Elaboration of Gold Nanostructure Arrays
59(1)
3.2.3 Functionalization of Gold Nanostructures by PNIPAM Brushes
59(2)
3.2.3.1 Synthesis of diazonium salt
59(1)
3.2.3.2 Initiator-modified gold surfaces
60(1)
3.2.3.3 Atomic Transfer Radical Polymerization (ATRP) of NIPAM
60(1)
3.3 Results and Discussion
61(6)
3.3.1 Characterization of PNIPAM-Coated Gold Nanodots
61(3)
3.3.2 Adsorption of Proteins on the PNIPAM-Grafted Gold Nanostructured Surface
64(3)
3.4 Conclusion
67(4)
4 Reactivity and Bio Samples Probed by Tip-Enhanced Raman Spectroscopy 71(38)
Zhenglong Zhang
Robert Meyer
Volker Deckert
4.1 Introduction-an Explanation of Tip-Enhanced Raman Spectroscopy
71(1)
4.2 Plasmon-Driven Chemical Reactions
72(10)
4.2.1 Hot Electron-Induced Chemical Reactions
73(2)
4.2.2 Plasmon-Driven Chemical Reactions in SERS
75(2)
4.2.3 Plasmon-Driven Chemical Reaction at the Tip of a Probe
77(5)
4.3 Probing Biological Samples
82(15)
4.3.1 Human Cells and Its Components
83(3)
4.3.2 Virus and Bacteria
86(3)
4.3.3 From Amino Acids to Peptides and Fibrils
89(5)
4.3.4 DNA and RNA
94(3)
4.4 Conclusion
97(12)
5 Surface-Enhanced Spectro-Electrochemistry of Biological and Molecular Catalysts on Plasmonic Electrodes 109(30)
Patrycja Kielb
Inez M. Weidinger
5.1 Principles of Electrocatalysis
110(5)
5.1.1 Why Do We Need to Understand Electrocatalytic Reactions?
110(3)
5.1.2 Metal-Porphyrin Complexes in Biology and Chemistry
113(2)
5.2 Methods to Probe Structure and Function of Catalysts on Electrodes
115(8)
5.2.1 Electrochemistry
115(2)
5.2.2 Infrared and Resonance Raman Spectroscopy of Porphyrins
117(2)
5.2.3 Surface-Enhanced Vibrational Spectroscopy
119(2)
5.2.4 Surface-Enhanced Spectro-Electrochemistry on Porphyrin Systems
121(2)
5.2.5 Time Resolved SER Spectroscopy
123(1)
5.3 Examples
123(11)
5.3.1 Cellobiose Dehydrogenase
124(3)
5.3.2 Cytochrome c Oxidase
127(3)
5.3.3 Hangman Complexes
130(4)
5.4 Conclusions
134(5)
6 Fluorescence Spectroscopy Enhancement on Photonic Nanoantennas 139(20)
Jerome Wenger
6.1 Introduction and Motivation
139(2)
6.2 Brief Theoretical Background: The Physics of Fluorescence Enhancement
141(3)
6.3 Experimental Approaches to Enhance Fluorescence
144(4)
6.3.1 Top-Down Milling
145(2)
6.3.2 Bottom-Up Self-Assembly
147(1)
6.3.3 Dielectric Alternatives to Plasmonic Metals
148(1)
6.4 Biochemical Applications of Enhanced Fluorescence
148(3)
6.4.1 Real-Time DNA Sequencing
149(1)
6.4.2 Nanoscale Organization of Lipid Membranes
150(1)
6.4.3 Forster Resonance Energy Transfer
150(1)
6.5 Conclusion
151(8)
7 Plasmonic-Based SERS-Traceable Drug Nanocarriers in Cancer Theranostics 159(40)
Monica Potara
Timea Nagy-Simon
Sorina Suarasan
Simion Astilean
7.1 Introduction
160(3)
7.2 SERS Encoded Plasmonic Nanoparticles for Cancer Detection and Imaging
163(6)
7.3 Combining SERS Imaging with Therapy for Cancer Theranostics
169(19)
7.3.1 SERS-Traceable Plasmonic Nanoparticles in Chemotherapeutic Drug Delivery Applications
171(8)
7.3.2 SERS-Traceable Plasmonic Nanoparticles in Photosensitizer Delivery Applications
179(9)
7.4 Conclusions
188(11)
8 Label-Free SERS Detection of Heme-Proteins with Porous Silver Nanocubes 199(20)
Maximilien Cottat
Marella de Angelis
Elizaveta Panfilova
Nikolai Khlebtsov
Roberto Pini
Paolo Matteini
8.1 Introduction
199(2)
8.2 Protein Detection Using Standard and Porous Nanocubes
201(11)
8.2.1 Experimental Section
201(2)
8.2.1.1 Fabrication of the nanoparticles
201(1)
8.2.1.2 SERS analysis
202(1)
8.2.2 Results and Discussion
203(19)
8.2.2.1 Characterization of the nanoparticles
203(1)
8.2.2.2 Simulation of the E-field distribution
204(2)
8.2.2.3 SERS detection
206(4)
8.2.2.4 SERS sensitivity
210(2)
8.3 Conclusions
212(7)
9 Observation of Biomolecules and Their Dynamics in SERS 219(14)
Jean Emmanuel Clement
Thibault Brule
Aymeric Leray
Eric Finot
9.1 Introduction
219(2)
9.2 Raman Spectroscopy of Proteins
221(1)
9.3 Detection of Single Structures
222(5)
9.3.1 Complexity: Sorting of Molecules
223(2)
9.3.2 Submolecular Resolution: Spectral Pointillism
225(2)
9.4 Dynamics
227(2)
9.4.1 Molecular Counting
227(1)
9.4.2 Strong Volatility
228(1)
9.5 Conclusion
229(4)
10 Intracellular Surface-Enhanced Raman Spectroscopy 233(44)
Jack Taylor
Anna Huefner
Jonathan Wingfield
Sumeet Mahajan
10.1 Intracellular Applications of SERS
233(2)
10.2 Nanoparticle-Cell Interactions
235(9)
10.2.1 Cellular Internalisation Methods
235(1)
10.2.2 The Endocytotic Pathway
236(3)
10.2.3 Manipulating Interactions
239(3)
10.2.4 Toxicity
242(2)
10.3 Intracellular SERS
244(20)
10.3.1 Advances in SERS-Reporter Research
246(7)
10.3.2 Advances in Reporter-Free SERS
253(11)
10.4 Conclusions and Outlook
264(13)
11 SERS-Based Nanotechnology for Imaging of Cellular Properties 277(26)
Ewelina Wiercigroch
Kamilla Malek
11.1 Cellular Interaction and Uptake of SERS Nanosensors
278(6)
11.2 Designing of Cellular SERS Nanoprobes
284(11)
11.2.1 Simple Functionalization of the Metal Surface
284(5)
11.2.2 Antibody- and Peptide-Functionalized SERS Tags
289(5)
11.2.3 Other Solutions for Cellular SERS-Sensing
294(1)
11.3 Conclusion
295(8)
Index 303
Marc Lamy de la Chapelle received his PhD in science physics in 1998 from the University of Nantes, France. After holding postdoctoral positions at the Office National d'Etude et de Recherche en Aéronautique, Paris (19982000) and the Department of Physics of Tsinghua University, China (20002001), he joined the Université de Technologie de Troyes in 2001 as an associate professor.

M. Nordin Félidj is professor at Université Paris Diderot, France, leader of the Molecular Plasmonics, Surface Enhanced Spectroscopies group, and vice-director of the French institute GDR CNRS Plasmonique moléculaire, spectroscopies exaltées de surface.