Atnaujinkite slapukų nuostatas

El. knyga: Plastics in Medical Devices: Properties, Requirements, and Applications

(President, Winovia, LLC, USA)
  • Formatas: EPUB+DRM
  • Serija: Plastics Design Library
  • Išleidimo metai: 24-Nov-2021
  • Leidėjas: William Andrew Publishing
  • Kalba: eng
  • ISBN-13: 9780323851275
  • Formatas: EPUB+DRM
  • Serija: Plastics Design Library
  • Išleidimo metai: 24-Nov-2021
  • Leidėjas: William Andrew Publishing
  • Kalba: eng
  • ISBN-13: 9780323851275

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

Plastics in Medical Devices: Properties, Requirements, and Applications, Third Edition provides a comprehensive overview on the main types of plastics used in medical device applications. The book focuses on the applications and properties that are most important in medical device design, such as chemical resistance, sterilization capability and biocompatibility. The roles of additives, stabilizers and fillers as well as the synthesis and production of polymers are covered and backed up with a wealth of data tables. The book also covers other key aspects in detail, including regulations, compliance, purchasing controls and supplier controls, and process validation.

This updated edition has been thoroughly revised with regard to new plastic materials, applications and requirements. This is a valuable resource for engineers, scientists and managers involved in the design and manufacture of medical devices.

  • Presents detailed coverage of commercially available plastics used in medical device applications, organized by polymer type and supported by data
  • Includes up-to-date regulatory requirements and practical information on purchasing and supplier controls, process validation and risk management
  • Supports the development, marketing and commercialization of medical devices and materials for use in medical devices
About the Author xvii
Preface xix
1 Introduction
1(12)
1.1 Introduction
1(6)
1.1.1 Population Growth and Aging Populations
1(1)
1.1.2 Minimally Invasive Procedures
1(3)
1.1.3 Increase of Infectious Diseases
4(1)
1.1.4 Outpatient and Home Health Care
4(1)
1.1.5 Wearables
5(1)
1.1.6 3D Printing
5(1)
1.1.7 Combination Products
6(1)
1.2 Medical Device Definition
7(1)
1.3 Medical Device Classification
8(1)
1.4 Types of Devices
9(1)
1.5 Organization of This Book
10(3)
References
10(3)
2 Regulations for Medical Devices and Application to Plastics Suppliers
13(28)
2.1 History and Introduction
13(1)
2.2 Medical Device Regulations
14(1)
2.3 United States Regulations
14(5)
2.3.1 Premarket Notification or 510(k) Clearance
17(1)
2.3.2 Premarket Approval
17(1)
2.3.3 FDA Master Files
18(1)
2.4 European Union Medical Device Regulation
19(2)
2.4.1 European Union Medical Device Regulation Requirements With Respect to Materials and Plastics
20(1)
2.5 European Union Invitro Diagnostic Regulation
21(1)
2.5.1 European Union Invitro Diagnostic Regulation Requirements With Respect to Materials and Plastics
21(1)
2.6 CE Marking for European Union Medical Device Regulation and European Union Invitro Diagnostic Regulation
22(1)
2.7 ISO 13485---The Global Quality Management Systems Standard for Medical Devices
23(1)
2.7.1 Application of ISO 13485:2016 to Plastics Suppliers and Processers
24(1)
2.8 Alignment of ISO 13485:2016 and FDA 21 CFR Part 820
24(1)
2.9 International Medical Device Regulators Forum
24(6)
2.10 Other Countries
30(6)
2.10.1 Japan
30(2)
2.10.2 China
32(1)
2.10.3 Australia
33(1)
2.10.4 India
33(1)
2.10.5 Canada
34(1)
2.10.6 Central and South America
35(1)
2.11 World Health Organization Medical Device Regulations Recommendations for Regions With No Regulatory Oversight or Regulations
36(1)
2.12 Applicability of the Regulations to Material Suppliers and Plastics Processors
37(1)
2.13 Conclusion
38(3)
References
38(3)
3 Materials Used in Medical Devices
41(24)
3.1 Introduction
41(1)
3.2 Metals
41(1)
3.3 Ceramics
42(1)
3.4 Glass
43(1)
3.5 Plastics
44(2)
3.6 Advantages of Plastics
46(9)
3.6.1 Design Flexibility
46(1)
3.6.2 Miniaturization of Components
47(1)
3.6.3 Lightweight
47(1)
3.6.4 Electrical Insulation and Conductivity
47(1)
3.6.5 Glass and Metal Replacement
48(2)
3.6.6 Thermal Insulation and Thermal Conductivity
50(1)
3.6.7 Color
50(1)
3.6.8 Soft-touch Properties
50(1)
3.6.9 Ability to be Metallized
50(1)
3.6.10 Transparency
51(1)
3.6.11 Water Resistance
51(1)
3.6.12 Chemical and Corrosion Resistance
52(1)
3.6.13 Mildew and Fungus Resistance
53(1)
3.6.14 Production Costs and Economies of Scale
53(1)
3.6.15 Ease of Processing
53(1)
3.6.16 Fillers and Additives to Tailor Properties
53(1)
3.6.17 Joining
53(1)
3.6.18 Sterilization
54(1)
3.6.19 Biocompatibility
55(1)
3.7 Disadvantages of Plastics
55(1)
3.7.1 Poor Mechanical Resistance
56(1)
3.7.2 Poor Thermal Resistance
56(1)
3.7.3 Sensitivity to Aging due to Heat, Light, Humidity, Air, and Gases
56(1)
3.7.4 Flammability and Combustibility
56(1)
3.7.5 Dimensional Stability and Warpage
56(1)
3.8 Types of Plastics
56(3)
3.8.1 Thermoplastics
56(1)
3.8.2 Thermosets
57(1)
3.8.3 Elastomers
58(1)
3.9 Homopolymers and Copolymers
59(2)
3.10 Polymer Blends and Alloys
61(1)
3.11 Medical Devices---Material Selection Process
62(1)
3.11.1 Physical and Mechanical Criteria
62(1)
3.11.2 Thermal Criteria
62(1)
3.11.3 Electrical Criteria
62(1)
3.11.4 Chemical Resistance
62(1)
3.11.5 Sterilization Capability
63(1)
3.11.6 B iocompatibility
63(1)
3.11.7 Long-Term Reliability and Durability
63(1)
3.12 Conclusion
63(2)
References
63(2)
4 Material Requirements for Plastics Used in Medical Devices
65(48)
4.1 Introduction
65(1)
4.2 Sterilization
65(19)
4.2.1 Steam Sterilization
68(5)
4.2.2 Dry Heat Sterilization
73(1)
4.2.3 Ethylene Oxide Sterilization
74(1)
4.2.4 Other Chemical Sterilization Methods
75(1)
4.2.5 Radiation
76(6)
4.2.6 Sterilization Summary
82(2)
4.3 Biocompatibility
84(12)
4.3.1 ISO 10993---Biocompatibility Standards
85(11)
4.4 Chemical Resistance
96(3)
4.4.1 Test Methods for Environmental Stress Cracking
98(1)
4.4.2 Test Methods for the Immersion Test
98(1)
4.4.3 Test Methods for Crazing of Transparent Plastics
99(1)
4.4.4 Chemical Resistance Summary
99(1)
4.5 Shelf Life and Aging
99(4)
4.6 Joining of Plastics
103(6)
4.6.1 Mechanical Techniques
104(1)
4.6.2 Welding
105(2)
4.6.3 Chemical Bonding
107(2)
4.7 Conclusion
109(4)
References
109(4)
5 Commodity Thermoplastics: Polyvinyl Chloride, Polyolefins, Cycloolefins and Polystyrene
113(54)
5.1 Introduction
113(1)
5.2 Polyvinyl Chloride
113(14)
5.2.1 PVC Manufacture
115(1)
5.2.2 PVC Additives
116(3)
5.2.3 PVC Properties
119(1)
5.2.4 PVC Chemical Resistance
120(1)
5.2.5 PVC Sterilization
121(2)
5.2.6 PVC Biocompatibility
123(2)
5.2.7 PVC Joining and Welding
125(1)
5.2.8 PVC Blends
125(1)
5.2.9 PVC Medical Device Applications
125(2)
5.3 Polyethylene (PE)
127(11)
5.3.1 Polyethylene Manufacture
127(6)
5.3.2 Polyethylene Properties
133(1)
5.3.3 Polyethylene Chemical Resistance
134(1)
5.3.4 Polyethylene Sterilization
134(3)
5.3.5 Polyethylene Biocompatibility
137(1)
5.3.6 Polyethylene Joining and Welding
138(1)
5.3.7 Polyethylene Applications---Examples
138(1)
5.4 Polypropylene (PP)
138(9)
5.4.1 Polypropylene Manufacture
138(4)
5.4.2 Polypropylene Properties
142(1)
5.4.3 Additives for Polypropylene
142(1)
5.4.4 Polypropylene Chemical Resistance
143(1)
5.4.5 Polypropylene Sterilization
144(1)
5.4.6 Polypropylene Biocompatibility
144(1)
5.4.7 Polypropylene Joining and Welding
145(1)
5.4.8 Polypropylene Applications
146(1)
5.5 Cyclo Olefin Copolymers (COCs)
147(4)
5.5.1 Cyclo Olefin Copolymer Manufacture
149(1)
5.5.2 Cyclo Olefin Copolymer Properties
149(1)
5.5.3 Cyclo Olefin Copolymer Chemical Resistance
150(1)
5.5.4 Cyclo Olefin Copolymer Sterilization
151(1)
5.5.5 Cyclo Olefin Copolymer Biocompatibility
151(1)
5.5.6 Cyclo Olefin Copolymer Joining and Welding
151(1)
5.5.7 Cyclo Olefin Copolymers Medical Applications
151(1)
5.6 Polystyrene (PS)
151(11)
5.6.1 Polystyrene Manufacture
154(1)
5.6.2 Polystyrene Properties
155(1)
5.6.3 Polystyrene Chemical Resistance
155(1)
5.6.4 Polystyrene Sterilization
156(3)
5.6.5 Polystyrene Biocompatibility
159(1)
5.6.6 Polystyrene Joining and Welding
159(1)
5.6.7 Polystyrene Applications---Examples
159(3)
5.7 Conclusion
162(1)
5.8 Commodity Thermoplastics Suppliers
163(4)
References
163(4)
6 Engineering Thermoplastics: Acrylics, Polycarbonates, Polyurethanes, Polyacetals, Polyesters, and Polyamides
167(66)
6.1 Introduction
167(1)
6.2 Acrylics
167(6)
6.2.1 Production and Properties of Acrylics
167(2)
6.2.2 Chemical Resistance of Acrylics
169(1)
6.2.3 Sterilization of Acrylics
169(1)
6.2.4 Biocompatibility of Acrylics
170(1)
6.2.5 Acrylics Welding and Joining
170(3)
6.2.6 Acrylics Applications
173(1)
6.3 Polycarbonates
173(15)
6.3.1 Production and Properties of Polycarbonates
174(4)
6.3.2 Polycarbonate Chemical Resistance
178(2)
6.3.3 Sterilization of Polycarbonates
180(1)
6.3.4 Polycarbonate Biocompatibility
181(2)
6.3.5 Bisphenol A ---Effects on Human Health
183(2)
6.3.6 Polycarbonate Joining and Welding
185(1)
6.3.7 Polycarbonate Applications---Examples
185(1)
6.3.8 Polycarbonate Blends
186(2)
6.4 Polyurethanes
188(8)
6.4.1 Production and Properties of Polyurethanes
190(1)
6.4.2 Chemical Resistance of Polyurethanes
191(3)
6.4.3 Polyurethane Sterilization
194(1)
6.4.4 Polyurethane Biocompatibility
194(1)
6.4.5 Joining and Welding of Polyurethanes
195(1)
6.4.6 Polyurethane Applications---Examples
195(1)
6.5 Polyacetals
196(6)
6.5.1 Production and Properties of Polyacetals
197(2)
6.5.2 Chemical Resistance of Polyacetals
199(1)
6.5.3 Polyacetal Sterilization
199(1)
6.5.4 Joining and Welding of Polyacetals
199(2)
6.5.5 Polyacetal Applications
201(1)
6.6 Polyesters
202(4)
6.6.1 Production and Properties of Polyesters
202(2)
6.6.2 Chemical Resistance of Polyesters
204(1)
6.6.3 Sterilization of Polyesters
205(1)
6.6.4 Polyester Biocompatibility
205(1)
6.6.5 Polyesters---Joining
205(1)
6.6.6 Polyesters---Applications
206(1)
6.7 Copolyesters
206(9)
6.7.1 Production and Properties of Copolyesters
209(1)
6.7.2 Chemical Resistance of Copolyesters
209(1)
6.7.3 Sterilization of Copolyesters
209(1)
6.7.4 Copolyester Biocompatibility
209(2)
6.7.5 Joining and Welding of Copolyesters
211(1)
6.7.6 Copolyesters---Applications
211(4)
6.8 Polyamides
215(12)
6.8.1 Production and Properties of Polyamides
215(9)
6.8.2 Chemical Resistance of Polyamides
224(1)
6.8.3 Polyamide Sterilization
224(1)
6.8.4 Polyamide Biocompatibility
224(2)
6.8.5 Joining and Welding of Polyamides
226(1)
6.8.6 Polyamides---Applications
226(1)
6.9 Conclusion
227(1)
6.10 Engineering Thermoplastic Suppliers
227(6)
References
229(4)
7 High-Temperature Engineering Thermoplastics: Polysulfones, Polyimides, Polysulfides, Polyketones, Liquid Crystalline Polymers, Fluoropolymers, and Polyarylamides
233(54)
7.1 Introduction
233(1)
7.2 Polysulfones
233(6)
7.2.1 Polysulfone Production
233(2)
7.2.2 Properties of Polysulfones
235(1)
7.2.3 Chemical Resistance of Polysulfones
236(1)
7.2.4 Sterilization of Polysulfones
236(1)
7.2.5 Polysulfones Biocompatibility
237(1)
7.2.6 Joining and Welding of Polysulfones
237(1)
7.2.7 Polysulfones---Applications
238(1)
7.3 Polyimides
239(9)
7.3.1 Polyetherimides Production
239(2)
7.3.2 Properties of Polyetherimides
241(3)
7.3.3 Chemical Resistance of Polyetherimides
244(1)
7.3.4 Polyetherimides Sterilization
244(1)
7.3.5 Polyetherimides Biocompatibility
244(1)
7.3.6 Joining and Welding of Polyetherimides
244(1)
7.3.7 Polyetherimides---Applications
245(3)
7.4 Polyamide-Imides
248(1)
7.4.1 Production of Polyamide-Imides
248(1)
7.4.2 Properties of Polyamide-Imides
248(1)
7.4.3 Chemical Resistance and Sterilization of Polyamide-Imides
248(1)
7.4.4 Joining and Welding of Polyamide-Imides
248(1)
7.4.5 Polyamide-Imides---Applications
248(1)
7.5 Polyphenylene Sulfide
249(4)
7.5.1 Production and Properties of Polyphenylene Sulfides
251(1)
7.5.2 Chemical Resistance of Polyphenylene Sulfides
252(1)
7.5.3 Sterilization of Polyphenylene Sulfides
252(1)
7.5.4 Joining and Welding of Polyphenylene Sulfides
253(1)
7.5.5 Polyphenylene Sulfides---Applications
253(1)
7.6 Polyaryletherketones
253(6)
7.6.1 Polyaryletherketone Production
254(1)
7.6.2 Properties of Polyaryletherketones
255(1)
7.6.3 Chemical Resistance of Polyaryletherketones
256(1)
7.6.4 Polyaryletherketone Sterilization
257(1)
7.6.5 Polyaryletherketone Biocompatibility
257(1)
7.6.6 Joining and Welding of Polyaryletherketones
257(2)
7.6.7 Polyaryletherketones---Applications
259(1)
7.7 Liquid Crystalline Polymers
259(7)
7.7.1 Liquid Crystalline Polymers Production
261(3)
7.7.2 Liquid Crystalline Polymers Properties
264(1)
7.7.3 Chemical Resistance and Sterilization of Liquid Crystalline Polymers
265(1)
7.7.4 Joining and Welding of Liquid Crystalline Polymers
265(1)
7.7.5 Liquid Crystalline Polymers Applications---Examples
266(1)
7.8 Fluoropolymers
266(11)
7.8.1 Fluoropolymers Production
267(1)
7.8.2 Fluoropolymers Properties
268(3)
7.8.3 Chemical Resistance of Fluoropolymers
271(1)
7.8.4 Sterilization of Fluoropolymers
271(2)
7.8.5 Fluoropolymers Biocompatibility
273(1)
7.8.6 Joining and Welding of Fluoropolymers
273(1)
7.8.7 Fluoropolymers Applications---Examples
274(3)
7.9 Polyarylamides
277(4)
7.9.1 Polyarylamides Production
277(1)
7.9.2 Polyarylamides Properties
278(1)
7.9.3 Polyarylamides Chemical Resistance
278(1)
7.9.4 Polyarylamides Sterilization
278(2)
7.9.5 Polyarylamides Biocompatibility
280(1)
7.9.6 Joining and Welding of Polyarylamides
280(1)
7.9.7 Polyarylamides Applications---Examples
281(1)
7.10 Conclusion
281(2)
7.11 High-temperature Engineering Thermoplastics Suppliers
283(4)
References
283(4)
8 Other Polymers: Styrenics, Silicones, Thermoplastic Elastomers, Biopolymers, and Thermosets
287(56)
8.1 Introduction
287(1)
8.2 Styrenics
287(8)
8.2.1 Styrenics Production
288(1)
8.2.2 Properties of Styrenics
289(3)
8.2.3 Chemical Resistance of Styrenics
292(1)
8.2.4 Sterilization of Styrenics
292(2)
8.2.5 Styrenics Biocompatibility
294(1)
8.2.6 Joining and Welding of Styrenics
294(1)
8.2.7 Styrenics---Applications
295(1)
8.3 Silicones
295(9)
8.3.1 Silicone Production
296(3)
8.3.2 Properties of Silicones
299(2)
8.3.3 Chemical Resistance of Silicones
301(2)
8.3.4 Sterilization of Silicones
303(1)
8.3.5 Silicone Biocompatibility
303(1)
8.3.6 Joining and Welding of Silicones
303(1)
8.3.7 Silicones---Applications
304(1)
8.4 Thermoplastic Elastomers
304(10)
8.4.1 Thermoplastic Elastomer Production
306(4)
8.4.2 Thermoplastic Elastomers Properties
310(1)
8.4.3 Chemical Resistance of Thermoplastic Elastomers
311(1)
8.4.4 Sterilization of Thermoplastic Elastomers
311(2)
8.4.5 Thermoplastic Elastomer Biocompatibility
313(1)
8.4.6 Thermoplastic Elastomer Joining and Welding
313(1)
8.4.7 Thermoplastic Elastomers---Applications
314(1)
8.5 Biopolymers
314(14)
8.5.1 Biopolymer Production
319(3)
8.5.2 Biopolymer Properties
322(1)
8.5.3 Chemical Resistance of Biopolymers
323(1)
8.5.4 Biopolymer Sterilization
323(4)
8.5.5 Biocompatibility of Biopolymers
327(1)
8.5.6 Joining and Welding of Biopolymers
328(1)
8.5.7 Biopolymers---Applications
328(1)
8.6 Thermosets
328(9)
8.6.1 Thermoset Production
330(4)
8.6.2 Properties of Thermosets
334(1)
8.6.3 Thermosets---Applications
335(2)
8.7 Conclusion
337(1)
8.8 Suppliers
337(6)
References
339(4)
9 Polymer Additives Used to Enhance Material Properties for Medical Device Applications
343(38)
9.1 Introduction
343(1)
9.2 Types of Additives
343(1)
9.3 Things to Consider When Using Additives
343(1)
9.4 Plasticizers
344(1)
9.5 Wear-Resistant and Lubricious Additives
345(5)
9.6 Pigments
350(1)
9.7 Laser Marking
351(3)
9.7.1 Types of Lasers
352(1)
9.7.2 Laser Marking Methods
353(1)
9.7.3 Suitable Plastics for Laser Marking
353(1)
9.7.4 Formation of Images
353(1)
9.8 Radiopaque Additives
354(3)
9.8.1 X-rays and Photoelectric Absorption
355(2)
9.8.2 Radiopacity Testing
357(1)
9.9 Antimicrobials
357(4)
9.10 Conductive Fillers
361(2)
9.11 Nanoadditives
363(7)
9.11.1 Nanoclays, Nanosilicates, and Nanotalcs
365(1)
9.11.2 Carbon Nanotubes
366(2)
9.11.3 Nanosilver
368(2)
9.12 Stabilizers
370(2)
9.12.1 Thermal stabilizers
370(1)
9.12.2 Light and Radiation Stabilizers
371(1)
9.13 Reinforcing Fillers
372(1)
9.13.1 Glass Fibers
373(1)
9.13.2 Carbon fiber
373(1)
9.13.3 Minerals
373(1)
9.14 Impact Modifiers
373(3)
9.15 Conclusion
376(5)
References
377(4)
10 Three-Dimensional Printing, Wearables, Medical Textiles, Adhesives, and Coatings
381(42)
10.1 Introduction
381(1)
10.2 Three-Dimensional Printing or 3D Printing for Medical Devices
381(6)
10.2.1 The Three-Dimensional Printing Process
382(3)
10.2.2 4D printing
385(1)
10.2.3 Materials Used in Three-dimensional Printing
385(1)
10.2.4 Regulatory Requirements for Three-Dimensional Printing of Medical Devices
385(1)
10.2.5 Medical Device Applications of Three-Dimensional Printing
386(1)
10.3 Wearable Medical Devices
387(6)
10.3.1 Requirements for Wearable Devices
388(2)
10.3.2 Wearable Device Applications
390(3)
10.4 Medical Textiles
393(6)
10.4.1 Requirements for Medical Textiles
393(1)
10.4.2 Regulatory Requirements for Medical Textiles
393(2)
10.4.3 Types of Materials and Fabrics used in Medical Textiles
395(1)
10.4.4 Types of Medical Textiles
396(2)
10.4.5 Fiber Formation
398(1)
10.4.6 Fiber Linear Density Measurement
398(1)
10.4.7 Plastics used in Medical Textile Fibers
398(1)
10.5 Adhesives Used in Medical Applications
399(9)
10.5.1 Adhesive Application Categories
400(2)
10.5.2 Adhesive Materials and Categories
402(3)
10.5.3 Adhesion Testing
405(1)
10.5.4 Plastics and Their Adhesive Bonding Capability
405(2)
10.5.5 Medical Device Applications of Adhesives
407(1)
10.6 Coatings in Medical Applications
408(8)
10.6.1 Types of Coatings
408(4)
10.6.2 Coating Methods
412(1)
10.6.3 Coating Materials
413(3)
10.6.4 Applications of Coatings
416(1)
10.7 Regulatory Requirements
416(2)
10.7.1 Three-Dimensional Printing Requirements
416(1)
10.7.2 Wearable Devices Requirements
416(2)
10.7.3 Medical Textiles Requirements
418(1)
10.8 Conclusion
418(5)
References
418(5)
11 Purchasing Controls and Supplier Quality for Medical Device Manufacturers and Their Suppliers
423(18)
11.1 Introduction
423(4)
11.2 Plastics Suppliers
427(1)
11.3 Regulatory Requirements for Purchasing Controls and Supplier Quality
428(5)
11.4 Global Harmonization Task Force (GHTF) Guidance Document on Purchasing Controls
433(5)
11.4.1 Planning
434(1)
11.4.2 Selection of Potential Suppliers
434(2)
11.4.3 Supplier Evaluation and Acceptance
436(1)
11.4.4 Finalization of Controls
436(1)
11.4.5 Feedback and Communication
437(1)
11.5 GHTF Guidance Document on Inspection of Purchasing Controls
438(1)
11.6 Conclusion
438(3)
References
439(2)
12 Process Validation for Medical Device Manufacturers and Their Suppliers
441(22)
12.1 Introduction
441(1)
12.2 Process Validation and the Applicable Regulations and Standards
442(1)
12.3 Processes That May Be Verified
443(3)
12.4 Processes That Require Validation
446(1)
12.5 Process Validation Overview
447(1)
12.6 Process Validation Planning and the Master Validation Plan
448(3)
12.6.1 The Master Validation Plan
449(1)
12.6.2 The Validation Plan
450(1)
12.6.3 The Validation Plan Example A
451(1)
12.7 Process Validation Prerequisites
451(1)
12.8 Process Development and Engineering Studies
452(2)
12.8.1 Injection Molded Part---Example A
452(2)
12.9 Installation Qualification
454(2)
12.9.1 Injection Molded Part Example---Installation Qualification
455(1)
12.10 Operational Qualification
456(1)
12.10.1 Injection Molded Part Example---Operational Qualification
456(1)
12.11 Performance Qualification
456(2)
12.11.1 Injection Molded Part Example---Production Qualification
457(1)
12.12 Process Validation Summary Report
458(1)
12.12.1 Injection Molded Part Example---Validation Summary Report
458(1)
12.13 Manual Processes
458(1)
12.13.1 Installation Qualification or Equipment Qualification
458(1)
12.13.2 Operator and Manufacturing Work Instruction Qualification
459(1)
12.13.3 Performance Qualification
459(1)
12.14 Automated Processes and Software Validation
459(1)
12.15 The Validation Life Cycle
460(1)
12.16 Revalidation
460(1)
12.17 Other Validations---Packaging, Cleaning, and Sterilization
461(1)
12.18 Conclusion
461(2)
References
462(1)
13 Risk Management for Medical Devices
463(22)
13.1 Introduction
463(1)
13.2 Chronology of Risk Management in Medical Devices
463(2)
13.3 Quality Management Systems and Risk Management
465(6)
13.3.1 21 CFR Part 820 and Risk Management
465(3)
13.3.2 ISO 13485 and Risk Management
468(1)
13.3.3 EU MDR, EU IVDR, and Risk Management
469(2)
13.4 Risk Management Per ISO 14971:2019
471(7)
13.4.1 ISO 14971:2019---Scope and Definitions
473(1)
13.4.2 ISO 14971:2019---Basic Process
473(1)
13.4.3 ISO 14971:2019---Risk Analysis Prerequisites
474(1)
13.4.4 ISO 14971:2019---Risk Analysis
475(2)
13.4.5 ISO 14971:2019---Overall Residual Risk
477(1)
13.4.6 ISO 14971:2019---Production and Postproduction Activities
478(1)
13.5 Other Risk Management Techniques Supporting Risk Analysis
478(2)
13.5.1 Failure Mode and Effects Analysis
478(1)
13.5.2 Fault Tree Analysis
479(1)
13.5.3 Hazard Analysis and Critical Control Points
479(1)
13.6 Standards Related to ISO 14971
480(1)
13.7 ISO 10993---1 Biocompatibility and Risk Management
481(2)
13.7.1 Nanomaterials and Risk Management
483(1)
13.8 Conclusion
483(2)
References
483(2)
Appendix 485(8)
Index 493
Vinny Sastri, Ph.D., is the President of Winovia, LLC, a consultancy company specializing in quality management systems, notably in the area of medical devices. Dr. Sastris areas of expertise include FDA and ISO quality management systems for medical devices and pharmaceuticals, product development processes, design controls, manufacturing and process validation, risk management, six sigma and design for six sigma, CA/PA, and materials. He is a certified Six Sigma black-belt, and has a strong track record in leading, managing, establishing and implementing growth and quality initiatives into client organizations around the world, resulting effective quality management systems and operational excellence. Dr. Sastri was on the faculty of the Association for the Advancement of Medical Instrumentation (AAMI) that provides training (along with the FDA) on the FDA Quality Systems Requirements and Industry Practice, Design Controls, Process Validation and Risk Management to the medical device industry. He now conducts public and in-house training through his company Winovia LLC. Prior to starting Winovia, Dr. Sastri held global leadership positions in technology, quality, manufacturing and marketing in companies including BASF, AlliedSignal and General Electric. He earned a Ph.D. from Rutgers University, completed post-doctoral work at Brooklyn Polytechnic Institute, and was an Adjunct Professor at Virginia Commonwealth University in Richmond, Virginia. Dr. Sastri has over 20 publications and 6 patents, and has presented at many international conferences and webinars in the United States, Europe, and Asia.