Foreword |
|
vii | |
Preface |
|
ix | |
|
|
ix | |
|
|
xi | |
|
|
xi | |
|
|
xii | |
|
|
xiii | |
|
|
1 | (34) |
|
|
3 | (14) |
|
1.1 Data Mining and Predictive Analytics |
|
|
3 | (1) |
|
1.1.1 Benefiting from Open Standards and Cloud Computing |
|
|
4 | (1) |
|
1.1.2 The Issue of Operational Deployment |
|
|
4 | (1) |
|
1.2 The Predictive Model Markup Language |
|
|
5 | (3) |
|
1.2.1 One Standard, One Process |
|
|
8 | (1) |
|
1.2.2 PMML Release History |
|
|
9 | (2) |
|
|
11 | (2) |
|
|
13 | (1) |
|
|
14 | (1) |
|
1.2.6 PMML On-Line Discussion Groups |
|
|
15 | (1) |
|
|
16 | (1) |
|
|
17 | (18) |
|
|
18 | (1) |
|
|
19 | (1) |
|
2.2.1 Categorical Entries |
|
|
19 | (1) |
|
|
20 | (1) |
|
|
21 | (1) |
|
2.3.1 Transformation Dictionary |
|
|
22 | (1) |
|
2.3.2 Local Transformations |
|
|
23 | (1) |
|
|
23 | (2) |
|
|
25 | (3) |
|
|
28 | (3) |
|
|
31 | (1) |
|
|
31 | (4) |
|
|
35 | (30) |
|
|
37 | (14) |
|
3.1 Continuous Normalization |
|
|
37 | (1) |
|
3.2 Discrete Normalization |
|
|
38 | (2) |
|
|
40 | (4) |
|
|
44 | (7) |
|
|
51 | (14) |
|
|
51 | (10) |
|
|
61 | (4) |
|
|
65 | (82) |
|
|
67 | (10) |
|
5.1 Association Rules in PMML |
|
|
67 | (2) |
|
|
69 | (1) |
|
|
70 | (1) |
|
|
71 | (2) |
|
|
73 | (4) |
|
|
77 | (10) |
|
6.1 Clustering Models in PMML |
|
|
77 | (1) |
|
6.1.1 Distance and Similarity Measures |
|
|
78 | (3) |
|
|
81 | (1) |
|
6.2 TwoStep Clustering Model |
|
|
82 | (1) |
|
|
83 | (1) |
|
6.2.2 Partition and Covariance |
|
|
84 | (3) |
|
|
87 | (6) |
|
7.1 Decision Trees in PMML |
|
|
87 | (6) |
|
|
93 | (4) |
|
|
93 | (1) |
|
|
94 | (2) |
|
|
96 | (1) |
|
|
97 | (12) |
|
9.1 Back-Propagation Network |
|
|
97 | (1) |
|
9.1.1 Back-Propagation Network in PMML |
|
|
98 | (5) |
|
|
103 | (1) |
|
9.2.1 Radial-Basis Network in PMML |
|
|
104 | (2) |
|
9.3 Topology Representing Network |
|
|
106 | (1) |
|
|
107 | (2) |
|
|
109 | (4) |
|
10.1 Regression Functions |
|
|
109 | (1) |
|
10.2 Regression Models in PMML |
|
|
110 | (3) |
|
11 General Regression Models |
|
|
113 | (6) |
|
|
119 | (8) |
|
12.1 Score Allocation for Categorical Attributes |
|
|
119 | (2) |
|
12.2 Score Allocation for Continuous Attributes |
|
|
121 | (2) |
|
12.3 Score Allocation for Complex Attributes |
|
|
123 | (2) |
|
12.4 Computing the Overall Score |
|
|
125 | (2) |
|
13 Support Vector Machines |
|
|
127 | (8) |
|
|
128 | (7) |
|
|
135 | (12) |
|
14.1 Time Series Models in PMML |
|
|
135 | (1) |
|
14.1.1 Data Representation |
|
|
136 | (2) |
|
|
138 | (2) |
|
14.1.2.1 TimeCycle and TimeException |
|
|
140 | (3) |
|
14.1.3 Representing the Model |
|
|
143 | (4) |
|
|
147 | (6) |
|
|
149 | (4) |
|
|
153 | (8) |
|
|
155 | (6) |
|
|
156 | (1) |
|
|
157 | (4) |
|
|
161 | (6) |
|
|
163 | (4) |
Index |
|
167 | |