Atnaujinkite slapukų nuostatas

El. knyga: Point-Counting and the Zilber-Pink Conjecture

(University of Oxford)
  • Formatas: PDF+DRM
  • Serija: Cambridge Tracts in Mathematics
  • Išleidimo metai: 09-Jun-2022
  • Leidėjas: Cambridge University Press
  • Kalba: eng
  • ISBN-13: 9781009301923
  • Formatas: PDF+DRM
  • Serija: Cambridge Tracts in Mathematics
  • Išleidimo metai: 09-Jun-2022
  • Leidėjas: Cambridge University Press
  • Kalba: eng
  • ISBN-13: 9781009301923

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

Point-counting results for sets in real Euclidean space have found remarkable applications to diophantine geometry, enabling significant progress on the AndréOort and ZilberPink conjectures. The results combine ideas close to transcendence theory with the strong tameness properties of sets that are definable in an o-minimal structure, and thus the material treated connects ideas in model theory, transcendence theory, and arithmetic. This book describes the counting results and their applications along with their model-theoretic and transcendence connections. Core results are presented in detail to demonstrate the flexibility of the method, while wider developments are described in order to illustrate the breadth of the diophantine conjectures and to highlight key arithmetical ingredients. The underlying ideas are elementary and most of the book can be read with only a basic familiarity with number theory and complex algebraic geometry. It serves as an introduction for postgraduate students and researchers to the main ideas, results, problems, and themes of current research in this area.

Recenzijos

' a good reference for researchers intending to start work on this conjecture and related subjects.' Ricardo Bianconi, MathSciNet

Daugiau informacijos

Explores the recent spectacular applications of point-counting in o-minimal structures to functional transcendence and diophantine geometry.
Preface vii
Conventions x
Acknowledgements xi
1 Introduction
1(6)
PART I POINT-COUNTING AND DIOPHANTINE APPLICATIONS
7(52)
2 Point-Counting
9(9)
3 Multiplicative Manin--Mumford
18(8)
4 Powers of the Modular Curve as Shimura Varieties
26(12)
5 Modular Andre--Oort
38(6)
6 Point-Counting and the Andre--Oort Conjecture
44(15)
PART II O-MINIMALITY AND POINT-COUNTING
59(52)
7 Model Theory and Definable Sets
61(8)
8 O-Minimal Structures
69(13)
9 Parameterization and Point-Counting
82(12)
10 Better Bounds
94(10)
11 Point-Counting and Galois Orbit Bounds
104(3)
12 Complex Analysis in an O-Minimal Structure
107(4)
PART III AX-SCHANUEL PROPERTIES
111(34)
13 Schanuel's Conjecture and Ax-Schanuel
113(6)
14 A Formal Setting
119(7)
15 Modular Ax-Schanuel
126(4)
16 Ax-Schanuel for Shimura Varieties
130(10)
17 Quasi-Periods of Elliptic Curves
140(5)
PART IV THE ZILBER--PINK CONJECTURE
145(69)
18 Sources
147(9)
19 Formulations
156(8)
20 Some Results
164(16)
21 Curves in a Power of the Modular Curve
180(12)
22 Conditional Modular Zilber--Pink
192(7)
23 O-Minimal Uniformity
199(6)
24 Uniform Zilber--Pink
205(9)
References 214(27)
List of Notation 241(3)
Index 244
Jonathan Pila is Reader in Mathematical Logic and Professor of Mathematics at the University of Oxford, and a Fellow of the Royal Society. He has held posts at Columbia University, McGill University, and the University of Bristol, as well as visiting positions at the Institute for Advanced Study, Princeton. His work has been recognized by a number of honours and he has been awarded a Clay Research Award, a London Mathematical Society Senior Whitehead Prize, and shared the Karp Prize of the Association for Symbolic Logic. This book is based on the Weyl Lectures delivered at the Institute for Advanced Study in Princeton in 2018.