Preface |
|
xv | |
Acknowledgments |
|
xix | |
Authors |
|
xxi | |
1 Polarized electromagnetic waves |
|
1 | (50) |
|
1.1 Introduction: Nature of polarized electromagnetic waves |
|
|
1 | (2) |
|
|
3 | (3) |
|
1.3 Analytic signal representation and the Jones vector |
|
|
6 | (4) |
|
1.4 Coherency matrix and Stokes vector |
|
|
10 | (6) |
|
1.4.1 2D coherency matrix |
|
|
10 | (1) |
|
|
11 | (5) |
|
1.5 2D space-time and space-frequency representations of coherence and polarization |
|
|
16 | (13) |
|
1.5.1 2D representations of coherence and polarization |
|
|
16 | (4) |
|
1.5.1.1 Mutual coherence matrix |
|
|
17 | (1) |
|
1.5.1.2 Space-time two-point Stokes vector |
|
|
18 | (1) |
|
1.5.1.3 Cross-spectral density matrix |
|
|
18 | (1) |
|
1.5.1.4 Space-frequency two-point Stokes vector |
|
|
19 | (1) |
|
1.5.2 Measures of the degree of coherence of 2D electromagnetic fields |
|
|
20 | (6) |
|
1.5.2.1 Complex degree of coherence |
|
|
20 | (1) |
|
1.5.2.2 Complex degree of mutual polarization |
|
|
21 | (1) |
|
1.5.2.3 Intrinsic degrees of coherence |
|
|
22 | (2) |
|
1.5.2.4 Electromagnetic degree of coherence |
|
|
24 | (1) |
|
1.5.2.5 Overall degree of coherence |
|
|
25 | (1) |
|
1.5.3 Cross-spectral purity and coherence-polarization purity |
|
|
26 | (3) |
|
|
29 | (2) |
|
1.7 Polarimetric interpretation of the Pauli matrices |
|
|
31 | (1) |
|
1.8 Intrinsic coherency matrix |
|
|
32 | (4) |
|
|
36 | (8) |
|
1.9.1 Concept of polarimetric purity |
|
|
36 | (3) |
|
1.9.2 Components of purity of a 2D state of polarization |
|
|
39 | (1) |
|
1.9.3 Degree of mutual coherence and polarimetric purity |
|
|
40 | (3) |
|
1.9.4 Polarization entropy |
|
|
43 | (1) |
|
1.10 Composition and decomposition of 2D states of polarization |
|
|
44 | (2) |
|
1.10.1 Coherent composition and decomposition of 2D pure states |
|
|
44 | (1) |
|
1.10.2 Incoherent composition and decomposition of 2D mixed states |
|
|
44 | (2) |
|
1.11 Classification of 2D states of polarization |
|
|
46 | (1) |
|
1.12 Invariant quantities of a 2D polarization state |
|
|
46 | (1) |
|
1.13 Quantum description of 2D states of polarization |
|
|
46 | (3) |
|
|
49 | (2) |
2 Three-dimensional states of polarization |
|
51 | (48) |
|
|
51 | (1) |
|
|
51 | (2) |
|
|
53 | (1) |
|
|
54 | (2) |
|
2.5 Composition and decomposition of 3D states of polarization |
|
|
56 | (4) |
|
2.5.1 Coherent composition of 3D pure states |
|
|
57 | (1) |
|
2.5.2 Arbitrary decomposition of 3D states |
|
|
57 | (1) |
|
2.5.3 Spectral decomposition of 3D states |
|
|
58 | (1) |
|
2.5.4 Characteristic decomposition of 3D states |
|
|
58 | (1) |
|
2.5.5 Polarimetric subtraction |
|
|
59 | (1) |
|
2.6 3D space-time and space-frequency representations of coherence and polarization |
|
|
60 | (5) |
|
2.6.1 3D representations of coherence and polarization |
|
|
60 | (2) |
|
2.6.2 Measures of the 3D degree of coherence of electromagnetic fields |
|
|
62 | (5) |
|
2.6.2.1 Intrinsic degrees of coherence |
|
|
63 | (1) |
|
2.6.2.2 Electromagnetic degree of coherence |
|
|
64 | (1) |
|
2.6.2.3 Overall space-frequency degree of coherence |
|
|
64 | (1) |
|
2.7 Intrinsic 3D coherency Matrix |
|
|
65 | (2) |
|
2.8 Intrinsic 3D Stokes parameters |
|
|
67 | (3) |
|
2.8.1 Intrinsic Stokes parameters for 2D states embedded into the 3D representation |
|
|
69 | (1) |
|
2.9 3D polarimetric purity |
|
|
70 | (10) |
|
2.9.1 Norms in the spaces of 3D coherency matrices and Stokes parameter matrices |
|
|
70 | (1) |
|
2.9.2 Degree of polarimetric purity |
|
|
71 | (2) |
|
2.9.3 Components of purity of a 3D state of polarization |
|
|
73 | (1) |
|
2.9.4 Indices of polarimetric purity |
|
|
74 | (2) |
|
|
76 | (2) |
|
2.9.6 Degrees of mutual coherence of a 3D polarization state |
|
|
78 | (1) |
|
2.9.7 3D polarization entropy |
|
|
79 | (1) |
|
2.10 Interpretation of the coherency matrix for 3D polarization states |
|
|
80 | (12) |
|
2.10.1 Pure states (rank R =1) |
|
|
80 | (2) |
|
2.10.1.1 Linearly polarized pure states (r=1, t=1) |
|
|
81 | (1) |
|
2.10.1.2 Pure states with arbitrary polarization ellipse and nonzero ellipticity (r= 1, t= 2) |
|
|
82 | (1) |
|
2.10.2 Mixed states with rank R = 2 |
|
|
82 | (7) |
|
2.10.2.1 Mixed states with fixed direction of propagation (r=2, t=2 => Pd= 1) |
|
|
83 | (3) |
|
2.10.2.2 Mixed states with rank r= 2 and fluctuating direction of propagation (r=2, t=3 => pd < 1) |
|
|
86 | (3) |
|
2.10.3 Mixed states with rank R = 3 |
|
|
89 | (3) |
|
2.10.3.1 Arbitrary decomposition |
|
|
89 | (1) |
|
2.10.3.2 Characteristic decomposition |
|
|
90 | (2) |
|
2.10.4 Classification of 3D polarization states |
|
|
92 | (1) |
|
2.11 Invariant quantities of a 3D polarization state |
|
|
92 | (1) |
|
2.12 Quantum formulation for 3D polarization states |
|
|
92 | (5) |
|
|
97 | (2) |
3 Nondepolarizing media |
|
99 | (24) |
|
|
99 | (3) |
|
3.2 Basic polarimetric interaction: Jones calculus |
|
|
102 | (5) |
|
|
102 | (1) |
|
3.2.2 Jones algebra and its physical interpretation |
|
|
103 | (3) |
|
3.2.2.1 Product of Jones matrices |
|
|
104 | (1) |
|
3.2.2.2 Product of a Jones matrix and a scalar |
|
|
104 | (1) |
|
3.2.2.3 Determinant and norms of a Jones matrix |
|
|
104 | (1) |
|
3.2.2.4 Inverse of a Jones matrix |
|
|
105 | (1) |
|
3.2.2.5 Additive composition of Jones matrices |
|
|
105 | (1) |
|
3.2.3 Reciprocity in Jones matrices |
|
|
106 | (1) |
|
3.2.4 Changes of reference frame and rotated Jones matrices |
|
|
106 | (1) |
|
3.3 Pure Mueller matrices |
|
|
107 | (9) |
|
3.3.1 Concept of pure Mueller matrix |
|
|
107 | (4) |
|
3.3.2 Block form of Mueller matrix |
|
|
111 | (1) |
|
3.3.3 Reciprocity properties of pure Mueller matrices |
|
|
111 | (1) |
|
3.3.4 Passivity condition for pure Mueller matrices |
|
|
112 | (1) |
|
3.3.5 Algebraic operations with pure Mueller matrices and their physical interpretation |
|
|
113 | (2) |
|
3.3.5.1 Product of pure Mueller matrices |
|
|
113 | (1) |
|
3.3.5.2 Product of a pure Mueller matrix and a nonnegative scalar |
|
|
113 | (1) |
|
3.3.5.3 Determinant and norms of a pure Mueller matrix |
|
|
113 | (1) |
|
3.3.5.4 Inverse of a pure Mueller matrix |
|
|
114 | (1) |
|
3.3.5.5 Additive composition of Mueller matrices |
|
|
115 | (1) |
|
3.3.6 Changes of reference frame and rotated Mueller matrices |
|
|
115 | (1) |
|
3.4 Singular states of polarization |
|
|
116 | (2) |
|
3.5 Normality and degeneracy of Jones and Mueller matrices |
|
|
118 | (4) |
|
|
118 | (1) |
|
3.5.2 Nonnormal operators |
|
|
119 | (1) |
|
3.5.3 Degenerate operators |
|
|
120 | (2) |
|
|
122 | (1) |
4 Nondepolarizing media: Retarders, diattenuators, and serial decompositions |
|
123 | (44) |
|
|
123 | (1) |
|
|
123 | (12) |
|
4.2.1 Jones matrices of retarders |
|
|
124 | (5) |
|
4.2.1.1 Elliptic retarder |
|
|
125 | (1) |
|
4.2.1.2 Elliptic retarder oriented at 0° |
|
|
125 | (1) |
|
4.2.1.3 Circular retarder and rotator |
|
|
125 | (1) |
|
|
126 | (1) |
|
4.2.1.5 Horizontal linear retarder |
|
|
126 | (1) |
|
|
127 | (1) |
|
4.2.1.7 Operational form of the Jones matrix of a retarder |
|
|
127 | (1) |
|
4.2.1.8 Exponential form of the Jones matrix of a retarder |
|
|
128 | (1) |
|
4.2.1.9 Jones matrix of a serial combination of retarders |
|
|
128 | (1) |
|
4.2.2 Mueller matrices of retarders |
|
|
129 | (6) |
|
4.2.2.1 Retardance vector and components of retardance |
|
|
129 | (2) |
|
4.2.2.2 Mueller matrix of a rotator |
|
|
131 | (1) |
|
4.2.2.3 Horizontal linear retarder |
|
|
132 | (1) |
|
4.2.2.4 Operational form of the Mueller matrix of a retarder |
|
|
132 | (1) |
|
4.2.2.5 Eigenvalues and eigenstates of the Mueller matrix of a retarder |
|
|
132 | (1) |
|
4.2.2.6 Elliptic retarder oriented at 0° |
|
|
133 | (1) |
|
4.2.2.7 Circular retarder |
|
|
133 | (1) |
|
|
133 | (1) |
|
|
134 | (1) |
|
4.2.2.10 Mueller matrix of a serial combination of retarders |
|
|
134 | (1) |
|
4.2.2.11 Euler parameterization of the Mueller matrix of a retarder |
|
|
134 | (1) |
|
4.2.3 Equivalence theorems for serial combinations of retarders |
|
|
135 | (1) |
|
|
135 | (12) |
|
4.3.1 Jones matrices of diattenuators |
|
|
137 | (5) |
|
4.3.1.1 Elliptic diattenuator |
|
|
137 | (1) |
|
4.3.1.2 Elliptic diattenuator oriented at 0° |
|
|
138 | (1) |
|
4.3.1.3 Circular diattenuator |
|
|
138 | (1) |
|
4.3.1.4 Linear diattenuator |
|
|
139 | (1) |
|
4.3.1.5 Horizontal linear diattenuator |
|
|
139 | (1) |
|
4.3.1.6 Operational form of the Jones matrix of a normal diattenuator |
|
|
139 | (1) |
|
4.3.1.7 Exponential form of the Jones matrix of a diattenuator |
|
|
139 | (1) |
|
4.3.1.8 Serial combination of diattenuators |
|
|
140 | (1) |
|
4.3.1.9 Diattenuating retarder |
|
|
141 | (1) |
|
4.3.2 Mueller matrices of diattenuators |
|
|
142 | (5) |
|
4.3.2.1 Components of diattenuation |
|
|
142 | (1) |
|
4.3.2.2 Horizontal linear diattenuator |
|
|
143 | (1) |
|
4.3.2.3 Operational form of the Mueller matrix of a normal diattenuator |
|
|
143 | (1) |
|
4.3.2.4 Eigenvalues and eigenstates of the Mueller matrix of a normal diattenuator |
|
|
144 | (1) |
|
4.3.2.5 Elliptic diattenuator oriented at 0° |
|
|
144 | (1) |
|
4.3.2.6 Circular diattenuator |
|
|
145 | (1) |
|
4.3.2.7 Linear diattenuator |
|
|
145 | (1) |
|
4.3.2.8 Horizontal linear diattenuator |
|
|
146 | (1) |
|
4.3.2.9 Serial combination of diattenuators |
|
|
146 | (1) |
|
4.3.2.10 Diattenuating retarder |
|
|
146 | (1) |
|
4.3.3 Equivalence theorems for serial decompositions of normal diattenuators |
|
|
147 | (1) |
|
4.4 Other mathematical representations of the polarimetric properties of nondepolarizing systems |
|
|
147 | (4) |
|
4.4.1 Pure covariance matrix |
|
|
148 | (1) |
|
|
r148 | |
|
|
149 | (1) |
|
4.4.4 The scattering matrix: Sinclair matrix and Kennaugh matrix |
|
|
149 | (2) |
|
4.5 Polar decomposition of a nondepolarizing system |
|
|
151 | (4) |
|
4.5.1 Application of the polar decomposition to an experimental example |
|
|
154 | (1) |
|
4.6 General serial decomposition of a nondepolarizing System |
|
|
155 | (2) |
|
4.7 Dual linear retarder transformation of a nondepolarizing system |
|
|
157 | (1) |
|
4.8 Constitutive vectors of a nondepolarizing Mueller matrix |
|
|
158 | (1) |
|
4.9 Invariant polarimetric quantities of a nondepolarizing Mueller matrix |
|
|
159 | (2) |
|
4.10 Particular forms of nondepolarizing Mueller matrices |
|
|
161 | (3) |
|
4.10.1 Normal pure Mueller matrices |
|
|
161 | (1) |
|
4.10.2 Nonnormal pure Mueller matrices |
|
|
162 | (1) |
|
4.10.3 Degenerate pure Mueller matrices |
|
|
162 | (1) |
|
4.10.4 Singular pure Mueller matrices |
|
|
162 | (13) |
|
4.10.4.1 Nonnormal elliptic polarizer |
|
|
163 | (1) |
|
|
164 | (3) |
5 The concept of Mueller matrix |
|
167 | (32) |
|
|
167 | (1) |
|
5.2 The concept of Mueller matrix |
|
|
168 | (2) |
|
5.3 Covariance and coherency matrices associated with a Mueller matrix |
|
|
170 | (5) |
|
5.4 Changes of reference frame and rotated Mueller matrices |
|
|
175 | (1) |
|
5.5 Characterization of Mueller matrices: Covariance criterion |
|
|
175 | (2) |
|
5.5.1 Covariance criterion |
|
|
175 | (1) |
|
5.5.2 Explicit algebraic formulation of the covariance criterion |
|
|
176 | (1) |
|
5.6 Normal form of a Mueller matrix |
|
|
177 | (7) |
|
5.6.1 Type-I canonical Mueller matrix |
|
|
178 | (2) |
|
5.6.2 Type-II canonical Mueller matrix |
|
|
180 | (3) |
|
5.6.3 Covariance characterization of Mueller matrices through their normal form |
|
|
183 | (1) |
|
5.7 Reciprocity properties of Mueller matrices |
|
|
184 | (1) |
|
5.8 Passivity constraints for Mueller matrices |
|
|
185 | (2) |
|
5.9 Vectorial partitioned expression of a Mueller matrix |
|
|
187 | (1) |
|
5.10 Spectral and characteristiodecompositions of a Mueller matrix |
|
|
187 | (2) |
|
5.10.1 Spectral decomposition |
|
|
187 | (1) |
|
5.10.2 Characteristic decomposition |
|
|
188 | (1) |
|
5.11 Polarimetric purity of a Mueller matrix |
|
|
189 | (7) |
|
5.11.1 Norms of the covariance, coherency, and Mueller matrices |
|
|
189 | (1) |
|
|
190 | (1) |
|
5.11.3 Depolarization index and depolarizance |
|
|
190 | (3) |
|
5.11.4 Polarization entropy |
|
|
193 | (1) |
|
5.11.5 Lorentz depolarization indices |
|
|
194 | (1) |
|
5.11.6 Other overall measures of depolarization |
|
|
195 | (4) |
|
5.11.6.1 Average degree of depolarization |
|
|
195 | (1) |
|
5.11.6.2 Depolarization power |
|
|
195 | (1) |
|
5.11.6.3 Scalar metric Qf(M) |
|
|
196 | (1) |
|
|
196 | (3) |
6 Physical quantities in a Mueller matrix |
|
199 | (36) |
|
|
199 | (1) |
|
6.2 Components of purity of a Mueller matrix |
|
|
199 | (9) |
|
6.2.1 Average intensity coefficient |
|
|
200 | (1) |
|
|
200 | (1) |
|
6.2.3 Reciprocal diattenuation |
|
|
201 | (1) |
|
|
202 | (1) |
|
6.2.5 Reciprocal polarizance |
|
|
203 | (1) |
|
6.2.6 Degree of polarizance |
|
|
203 | (1) |
|
6.2.7 Components of diattenuation and polarizance |
|
|
204 | (1) |
|
6.2.8 Degree of spherical purity |
|
|
204 | (2) |
|
6.2.9 Physical significance of the components of purity |
|
|
206 | (5) |
|
6.2.9.1 Components of purity of polarizers and analyzers |
|
|
206 | (1) |
|
6.2.9.2 Components of purity of the canonical depolarizers |
|
|
207 | (1) |
|
6.3 Indices of polarimetric purity |
|
|
208 | (3) |
|
6.4 Invariant quantities of a Mueller matrix |
|
|
211 | (4) |
|
6.4.1 Dual retarder transformation |
|
|
211 | (1) |
|
6.4.2 Single retarder transformation |
|
|
212 | (1) |
|
6.4.3 Dual rotation transformation |
|
|
213 | (1) |
|
6.4.4 Single rotation transformation |
|
|
214 | (1) |
|
|
215 | (6) |
|
6.5.1 Purity space for the components of purity |
|
|
215 | (1) |
|
6.5.2 Classification of Mueller matrices according to the values of the components of purity |
|
|
216 | (3) |
|
6.5.3 Purity space for the indices of polarimetric purity |
|
|
219 | (1) |
|
6.5.4 Purity regions in the space of components of purity |
|
|
220 | (1) |
|
6.6 Anisotropy coefficients of a Mueller matrix |
|
|
221 | (4) |
|
6.7 From a nondepolarizing to a depolarizing Mueller matrix |
|
|
225 | (8) |
|
6.7.1 Synthesis of a type-I Mueller matrix |
|
|
227 | (1) |
|
6.7.2 Synthesis of a type-II Mueller matrix |
|
|
228 | (4) |
|
6.7.3 On the reference pure Mueller matrix |
|
|
232 | (1) |
|
6.7.4 Depolarization synthesis |
|
|
232 | (1) |
|
|
233 | (2) |
7 Parallel decompositions of Mueller matrices |
|
235 | (22) |
|
|
235 | (1) |
|
7.2 Additive composition of Mueller matrices |
|
|
235 | (2) |
|
7.3 Arbitrary decomposition of a Mueller matrix |
|
|
237 | (3) |
|
7.3.1 Application of the arbitrary decomposition to an experimental example |
|
|
239 | (1) |
|
7.4 On the rank of the covariance matrix of a parallel composition |
|
|
240 | (1) |
|
7.5 Characteristic decomposition of a Mueller matrix |
|
|
241 | (4) |
|
7.5.1 Application of the characteristic decomposition to an experimental example |
|
|
243 | (2) |
|
7.6 Polarimetric subtraction of Mueller matrices |
|
|
245 | (5) |
|
7.6.1 Condition for polarimetric subtractability |
|
|
245 | (1) |
|
7.6.2 Polarimetric subtraction of a pure component |
|
|
246 | (1) |
|
7.6.3 Polarimetric subtraction of a pure component from a rank-two mixture |
|
|
247 | (2) |
|
7.6.4 Polarimetric subtraction of a depolarizing component |
|
|
249 | (1) |
|
7.7 Passivity constraints |
|
|
250 | (1) |
|
7.8 Optimum filtering of measured Mueller matrices |
|
|
251 | (3) |
|
|
254 | (3) |
8 Serial decompositions of depolarizing Mueller matrices |
|
257 | (34) |
|
|
257 | (1) |
|
8.2 Generalized polar decomposition |
|
|
257 | (5) |
|
8.2.1 Forward decomposition of a nonsingular Mueller matrix |
|
|
259 | (1) |
|
8.2.2 Forward decomposition of a singular Mueller matrix |
|
|
260 | (2) |
|
8.2.3 Reverse decomposition of a Mueller matrix |
|
|
262 | (1) |
|
8.3 Symmetric decomposition |
|
|
262 | (9) |
|
8.3.1 Symmetric decomposition of a type-I Mueller matrix |
|
|
263 | (5) |
|
8.3.1.1 N not = to 0 and N' not = to 0 |
|
|
263 | (4) |
|
8.3.1.2 N not = to 0 and N' = to 0 |
|
|
267 | (1) |
|
8.3.1.3 N = to 0 and N' not = to 0 |
|
|
267 | (1) |
|
|
267 | (1) |
|
8.3.2 Symmetric decomposition of a type-II Mueller matrix |
|
|
268 | (2) |
|
8.3.3 Synthetic view of the symmetric decomposition procedure |
|
|
270 | (1) |
|
8.4 Passivity constraints in serial decompositions of depolarizing Mueller matrices |
|
|
271 | (3) |
|
8.4.1 Passivity constraints in the Lu-Chipman decomposition |
|
|
271 | (1) |
|
8.4.2 Passivity constraints in the symmetric decomposition |
|
|
272 | (2) |
|
8.5 Invariant-equivalent Mueller matrices |
|
|
274 | (3) |
|
8.5.1 Invariant-equivalent transformations |
|
|
274 | (1) |
|
8.5.2 Reduced forms of a Mueller matrix |
|
|
275 | (1) |
|
8.5.3 Invariant-equivalent transformation induced by the symmetric decomposition |
|
|
276 | (1) |
|
8.5.4 Kernel form of a Mueller matrix |
|
|
276 | (1) |
|
8.6 Arrow decomposition of a Mueller matrix |
|
|
277 | (5) |
|
8.6.1 Arrow form of a Mueller matrix |
|
|
277 | (2) |
|
8.6.2 Characterization of Mueller matrices through the arrow form |
|
|
279 | (3) |
|
8.6.2.1 Characterization of nonpolarizing Mueller matrices |
|
|
280 | (1) |
|
8.6.2.2 Characterization of symmetric Mueller matrices |
|
|
280 | (1) |
|
8.6.2.3 Characterization of a Mueller matrix through its reduced form |
|
|
281 | (1) |
|
8.7 Singular Mueller matrices |
|
|
282 | (2) |
|
8.7.1 Depolarizing polarizer |
|
|
282 | (1) |
|
8.7.2 Depolarizing analyzer |
|
|
283 | (1) |
|
|
283 | (1) |
|
8.7.4 Singular depolarizer |
|
|
283 | (1) |
|
8.8 Serial-parallel decompositions |
|
|
284 | (6) |
|
8.8.1 Serial-parallel decomposition of a type-I Mueller matrix |
|
|
284 | (3) |
|
8.8.2 Serial-parallel decomposition of a type-II Mueller matrix |
|
|
287 | (3) |
|
|
290 | (1) |
9 Differential Jones and Mueller matrices |
|
291 | (42) |
|
|
291 | (1) |
|
9.2 Differential Jones matrices and elementary polarization properties |
|
|
291 | (9) |
|
9.2.1 Evolution equation for continuous media |
|
|
291 | (1) |
|
9.2.2 Definition of the elementary polarization properties |
|
|
292 | (4) |
|
9.2.3 Elementary polarization properties and Jones matrices of homogeneous media |
|
|
296 | (2) |
|
9.2.4 Extraction of the elementary polarization properties from the Jones matrix |
|
|
298 | (2) |
|
9.3 Differential Mueller matrices |
|
|
300 | (5) |
|
9.3.1 Differential Mueller matrix of a nondepolarizing medium |
|
|
300 | (2) |
|
9.3.2 Mueller matrix of a homogeneous nondepolarizing medium |
|
|
302 | (1) |
|
9.3.3 Extraction of the elementary polarization properties from a nondepolarizing Mueller matrix |
|
|
303 | (2) |
|
9.4 Differential decomposition of Mueller matrices |
|
|
305 | (14) |
|
9.4.1 Differential Mueller matrix of a depolarizing medium |
|
|
305 | (2) |
|
9:4.2 Existence and multiplicity of the Mueller matrix logarithm |
|
|
307 | (4) |
|
9.4.3 Local physical realizability |
|
|
311 | (3) |
|
9.4.4 Algebraic structure of the differential Mueller matrix formalism |
|
|
314 | (2) |
|
9.4.5 Relation of the differential decomposition to the product decompositions of Mueller matrices |
|
|
316 | (3) |
|
9.5 Differential Mueller matrix of a homogeneous depolarizing medium |
|
|
319 | (11) |
|
9.5.1 Differential Mueller matrix of a fluctuating homogeneous medium |
|
|
319 | (3) |
|
9.5.2 Statistical and geometrical interpretation of the differential Mueller matrix |
|
|
322 | (4) |
|
9.5.3 Interpretation of canonical, general, and rotationally invariant depolarizers |
|
|
326 | (3) |
|
9.5.4 Relation between the differential 'Mueller matrix and the Mueller matrix logarithm |
|
|
329 | (1) |
|
|
330 | (3) |
10 Geometric representation of Mueller matrices |
|
333 | (30) |
|
|
333 | (1) |
|
10.2 P-image and I-image of a Mueller matrix |
|
|
334 | (2) |
|
10.3 Representative ellipsoids of a Mueller matrix |
|
|
336 | (3) |
|
10.4 Ellipsoids associated with some special Mueller matrices |
|
|
339 | (3) |
|
10.4.1 Intrinsic depolarizer |
|
|
340 | (1) |
|
10.4.2 Type-I canonical depolarizer followed by a retarder |
|
|
340 | (1) |
|
10.4.3 Type-I canonical depolarizer followed by a normal diattenuator |
|
|
341 | (1) |
|
10.4.4 Type-II canonical depolarizer |
|
|
341 | (1) |
|
10.4.5 Type-II canonical depolarizer followed by a retarder |
|
|
342 | (1) |
|
10.4.6 Type-II canonical depolarizer followed by a normal diattenuator |
|
|
342 | (1) |
|
10.5 Characteristic ellipsoids of a depolarizing Mueller matrix |
|
|
342 | (5) |
|
10.5.1 Characteristic ellipsoids of a type-I Mueller matrix |
|
|
343 | (3) |
|
10.5.1.1 N not = to 0 and N' not = to 0 (D1 < 1, D2 < 1) |
|
|
343 | (2) |
|
10.5.1.2 N not - to 0 and N' = 0 (D1 = 1, D2 < 1) |
|
|
345 | (1) |
|
10.5.1.3 N = 0 and N' not = to 0 (D1 < 1, D2 = 1) |
|
|
345 | (1) |
|
|
346 | (1) |
|
10.5.2 Characteristic ellipsoids of a type-II Mueller matrix |
|
|
346 | (1) |
|
10.6 Intrinsic ellipsoids of a Mueller matrix |
|
|
347 | (2) |
|
10.6.1 Intrinsic ellipsoid of a Mueller matrix with D < 1 and P 1 |
|
|
348 | (1) |
|
10.6.2 Intrinsic ellipsoid of a depolarizing analyzer |
|
|
349 | (1) |
|
10.6.3 Intrinsic ellipsoid of a depolarizing polarizer |
|
|
349 | (1) |
|
10.7 Topological properties of the characteristic ellipsoids |
|
|
349 | (3) |
|
10.7.1 Polarizers and analyzers |
|
|
350 | (1) |
|
|
350 | (1) |
|
|
350 | (1) |
|
|
350 | (1) |
|
|
350 | (1) |
|
|
350 | (1) |
|
|
350 | (1) |
|
|
351 | (1) |
|
|
351 | (1) |
|
|
351 | (1) |
|
|
351 | (1) |
|
|
351 | (1) |
|
10.8 Five-vector representation |
|
|
352 | (2) |
|
10.9 Geometric view of depolarization, diattenuation and polarizance |
|
|
354 | (1) |
|
|
354 | (1) |
|
10.9.2 Polarizance and diattenuation (dichroism) |
|
|
355 | (1) |
|
10.9.3 Retardance (birefringence) |
|
|
355 | (1) |
|
10.10 Geometric representation of nondepolarizing Mueller matrices |
|
|
355 | (4) |
|
10.10.1 Two-vector representation |
|
|
355 | (1) |
|
10.10.2 Ellipsoid of a nondepblarizing Mueller matrix |
|
|
355 | (4) |
|
10.11 Experimental examples |
|
|
359 | (2) |
|
|
361 | (2) |
References |
|
363 | (12) |
Index |
|
375 | |