Atnaujinkite slapukų nuostatas

Polarized Light and the Mueller Matrix Approach [Kietas viršelis]

  • Formatas: Hardback, 383 pages, aukštis x plotis: 254x178 mm, weight: 910 g
  • Serija: Series in Optics and Optoelectronics
  • Išleidimo metai: 18-May-2016
  • Leidėjas: Apple Academic Press Inc.
  • ISBN-10: 1482251558
  • ISBN-13: 9781482251555
Kitos knygos pagal šią temą:
  • Formatas: Hardback, 383 pages, aukštis x plotis: 254x178 mm, weight: 910 g
  • Serija: Series in Optics and Optoelectronics
  • Išleidimo metai: 18-May-2016
  • Leidėjas: Apple Academic Press Inc.
  • ISBN-10: 1482251558
  • ISBN-13: 9781482251555
Kitos knygos pagal šią temą:
An Up-to-Date Compendium on the Physics and Mathematics of Polarization Phenomena

Polarized Light and the Mueller Matrix Approach thoroughly and cohesively integrates basic concepts of polarization phenomena from the dual viewpoints of the states of polarization of electromagnetic waves and the transformations of these states by the action of material media. Through selected examples, it also illustrates actual and potential applications in materials science, biology, and optics technology.

The book begins with the basic concepts related to two- and three-dimensional polarization states. It next describes the nondepolarizing linear transformations of the states of polarization through the Jones and MuellerJones approaches. The authors then discuss the forms and properties of the Jones and Mueller matrices associated with different types of nondepolarizing media, address the foundations of the Mueller matrix, and delve more deeply into the analysis of the physical parameters associated with Mueller matrices.

The authors proceed to interpret arbitrary decomposition and other interesting parallel decompositions as well as compare the powerful serial decompositions of depolarizing Mueller matrix M. They also analyze the general formalism and specific algebraic quantities and notions related to the concept of differential Mueller matrix. The book concludes with useful approaches that provide a geometric point of view on the polarization effects exhibited by different types of media.

Suitable for novices and more seasoned professionals, this book covers the main aspects of polarized radiation and polarization effects of material media. It expertly combines physical and mathematical concepts with important approaches for representing media through equivalent systems composed of simple components.

Recenzijos

"The best-ever treatise on the main concepts of both polarization states of light and Mueller matrices of media, illustrated with numerous figures, tables, and experimental examples. The comprehensiveness, clarity, and rigor make it essential for anyone interested in this field." Tiberiu Tudor, Professor, Faculty of Physics, University of Bucharest

"Gil and Ossikovski have gathered together in one source a wealth of information on the intricacies of the interpretation of representations of polarized light. Current research on the mathematics of polarized light is thoughtfully presented. This is an essential reference for the serious student or researcher in the field." Dr. Dennis Goldstein, Polaris Sensor Technologies, Inc.

Preface xv
Acknowledgments xix
Authors xxi
1 Polarized electromagnetic waves 1(50)
1.1 Introduction: Nature of polarized electromagnetic waves
1(2)
1.2 Polarization ellipse
3(3)
1.3 Analytic signal representation and the Jones vector
6(4)
1.4 Coherency matrix and Stokes vector
10(6)
1.4.1 2D coherency matrix
10(1)
1.4.2 Stokes vector
11(5)
1.5 2D space-time and space-frequency representations of coherence and polarization
16(13)
1.5.1 2D representations of coherence and polarization
16(4)
1.5.1.1 Mutual coherence matrix
17(1)
1.5.1.2 Space-time two-point Stokes vector
18(1)
1.5.1.3 Cross-spectral density matrix
18(1)
1.5.1.4 Space-frequency two-point Stokes vector
19(1)
1.5.2 Measures of the degree of coherence of 2D electromagnetic fields
20(6)
1.5.2.1 Complex degree of coherence
20(1)
1.5.2.2 Complex degree of mutual polarization
21(1)
1.5.2.3 Intrinsic degrees of coherence
22(2)
1.5.2.4 Electromagnetic degree of coherence
24(1)
1.5.2.5 Overall degree of coherence
25(1)
1.5.3 Cross-spectral purity and coherence-polarization purity
26(3)
1.6 Poincare sphere
29(2)
1.7 Polarimetric interpretation of the Pauli matrices
31(1)
1.8 Intrinsic coherency matrix
32(4)
1.9 Polarimetric purity
36(8)
1.9.1 Concept of polarimetric purity
36(3)
1.9.2 Components of purity of a 2D state of polarization
39(1)
1.9.3 Degree of mutual coherence and polarimetric purity
40(3)
1.9.4 Polarization entropy
43(1)
1.10 Composition and decomposition of 2D states of polarization
44(2)
1.10.1 Coherent composition and decomposition of 2D pure states
44(1)
1.10.2 Incoherent composition and decomposition of 2D mixed states
44(2)
1.11 Classification of 2D states of polarization
46(1)
1.12 Invariant quantities of a 2D polarization state
46(1)
1.13 Quantum description of 2D states of polarization
46(3)
1.14 Summary
49(2)
2 Three-dimensional states of polarization 51(48)
2.1 Introduction
51(1)
2.2 3D Jones vector
51(2)
2.3 3D Coherency matrix
53(1)
2.4 3D Stokes parameters
54(2)
2.5 Composition and decomposition of 3D states of polarization
56(4)
2.5.1 Coherent composition of 3D pure states
57(1)
2.5.2 Arbitrary decomposition of 3D states
57(1)
2.5.3 Spectral decomposition of 3D states
58(1)
2.5.4 Characteristic decomposition of 3D states
58(1)
2.5.5 Polarimetric subtraction
59(1)
2.6 3D space-time and space-frequency representations of coherence and polarization
60(5)
2.6.1 3D representations of coherence and polarization
60(2)
2.6.2 Measures of the 3D degree of coherence of electromagnetic fields
62(5)
2.6.2.1 Intrinsic degrees of coherence
63(1)
2.6.2.2 Electromagnetic degree of coherence
64(1)
2.6.2.3 Overall space-frequency degree of coherence
64(1)
2.7 Intrinsic 3D coherency Matrix
65(2)
2.8 Intrinsic 3D Stokes parameters
67(3)
2.8.1 Intrinsic Stokes parameters for 2D states embedded into the 3D representation
69(1)
2.9 3D polarimetric purity
70(10)
2.9.1 Norms in the spaces of 3D coherency matrices and Stokes parameter matrices
70(1)
2.9.2 Degree of polarimetric purity
71(2)
2.9.3 Components of purity of a 3D state of polarization
73(1)
2.9.4 Indices of polarimetric purity
74(2)
2.9.5 3D purity space
76(2)
2.9.6 Degrees of mutual coherence of a 3D polarization state
78(1)
2.9.7 3D polarization entropy
79(1)
2.10 Interpretation of the coherency matrix for 3D polarization states
80(12)
2.10.1 Pure states (rank R =1)
80(2)
2.10.1.1 Linearly polarized pure states (r=1, t=1)
81(1)
2.10.1.2 Pure states with arbitrary polarization ellipse and nonzero ellipticity (r= 1, t= 2)
82(1)
2.10.2 Mixed states with rank R = 2
82(7)
2.10.2.1 Mixed states with fixed direction of propagation (r=2, t=2 => Pd= 1)
83(3)
2.10.2.2 Mixed states with rank r= 2 and fluctuating direction of propagation (r=2, t=3 => pd < 1)
86(3)
2.10.3 Mixed states with rank R = 3
89(3)
2.10.3.1 Arbitrary decomposition
89(1)
2.10.3.2 Characteristic decomposition
90(2)
2.10.4 Classification of 3D polarization states
92(1)
2.11 Invariant quantities of a 3D polarization state
92(1)
2.12 Quantum formulation for 3D polarization states
92(5)
2.13 Summary
97(2)
3 Nondepolarizing media 99(24)
3.1 Introduction
99(3)
3.2 Basic polarimetric interaction: Jones calculus
102(5)
3.2.1 Jones matrix
102(1)
3.2.2 Jones algebra and its physical interpretation
103(3)
3.2.2.1 Product of Jones matrices
104(1)
3.2.2.2 Product of a Jones matrix and a scalar
104(1)
3.2.2.3 Determinant and norms of a Jones matrix
104(1)
3.2.2.4 Inverse of a Jones matrix
105(1)
3.2.2.5 Additive composition of Jones matrices
105(1)
3.2.3 Reciprocity in Jones matrices
106(1)
3.2.4 Changes of reference frame and rotated Jones matrices
106(1)
3.3 Pure Mueller matrices
107(9)
3.3.1 Concept of pure Mueller matrix
107(4)
3.3.2 Block form of Mueller matrix
111(1)
3.3.3 Reciprocity properties of pure Mueller matrices
111(1)
3.3.4 Passivity condition for pure Mueller matrices
112(1)
3.3.5 Algebraic operations with pure Mueller matrices and their physical interpretation
113(2)
3.3.5.1 Product of pure Mueller matrices
113(1)
3.3.5.2 Product of a pure Mueller matrix and a nonnegative scalar
113(1)
3.3.5.3 Determinant and norms of a pure Mueller matrix
113(1)
3.3.5.4 Inverse of a pure Mueller matrix
114(1)
3.3.5.5 Additive composition of Mueller matrices
115(1)
3.3.6 Changes of reference frame and rotated Mueller matrices
115(1)
3.4 Singular states of polarization
116(2)
3.5 Normality and degeneracy of Jones and Mueller matrices
118(4)
3.5.1 Normal operators
118(1)
3.5.2 Nonnormal operators
119(1)
3.5.3 Degenerate operators
120(2)
3.6 Summary
122(1)
4 Nondepolarizing media: Retarders, diattenuators, and serial decompositions 123(44)
4.1 Introduction
123(1)
4.2 Retarders
123(12)
4.2.1 Jones matrices of retarders
124(5)
4.2.1.1 Elliptic retarder
125(1)
4.2.1.2 Elliptic retarder oriented at 0°
125(1)
4.2.1.3 Circular retarder and rotator
125(1)
4.2.1.4 Linear retarder
126(1)
4.2.1.5 Horizontal linear retarder
126(1)
4.2.1.6 Pseudorotator
127(1)
4.2.1.7 Operational form of the Jones matrix of a retarder
127(1)
4.2.1.8 Exponential form of the Jones matrix of a retarder
128(1)
4.2.1.9 Jones matrix of a serial combination of retarders
128(1)
4.2.2 Mueller matrices of retarders
129(6)
4.2.2.1 Retardance vector and components of retardance
129(2)
4.2.2.2 Mueller matrix of a rotator
131(1)
4.2.2.3 Horizontal linear retarder
132(1)
4.2.2.4 Operational form of the Mueller matrix of a retarder
132(1)
4.2.2.5 Eigenvalues and eigenstates of the Mueller matrix of a retarder
132(1)
4.2.2.6 Elliptic retarder oriented at 0°
133(1)
4.2.2.7 Circular retarder
133(1)
4.2.2.8 Linear retarder
133(1)
4.2.2.9 Pseudorotator
134(1)
4.2.2.10 Mueller matrix of a serial combination of retarders
134(1)
4.2.2.11 Euler parameterization of the Mueller matrix of a retarder
134(1)
4.2.3 Equivalence theorems for serial combinations of retarders
135(1)
4.3 Diattenuators
135(12)
4.3.1 Jones matrices of diattenuators
137(5)
4.3.1.1 Elliptic diattenuator
137(1)
4.3.1.2 Elliptic diattenuator oriented at 0°
138(1)
4.3.1.3 Circular diattenuator
138(1)
4.3.1.4 Linear diattenuator
139(1)
4.3.1.5 Horizontal linear diattenuator
139(1)
4.3.1.6 Operational form of the Jones matrix of a normal diattenuator
139(1)
4.3.1.7 Exponential form of the Jones matrix of a diattenuator
139(1)
4.3.1.8 Serial combination of diattenuators
140(1)
4.3.1.9 Diattenuating retarder
141(1)
4.3.2 Mueller matrices of diattenuators
142(5)
4.3.2.1 Components of diattenuation
142(1)
4.3.2.2 Horizontal linear diattenuator
143(1)
4.3.2.3 Operational form of the Mueller matrix of a normal diattenuator
143(1)
4.3.2.4 Eigenvalues and eigenstates of the Mueller matrix of a normal diattenuator
144(1)
4.3.2.5 Elliptic diattenuator oriented at 0°
144(1)
4.3.2.6 Circular diattenuator
145(1)
4.3.2.7 Linear diattenuator
145(1)
4.3.2.8 Horizontal linear diattenuator
146(1)
4.3.2.9 Serial combination of diattenuators
146(1)
4.3.2.10 Diattenuating retarder
146(1)
4.3.3 Equivalence theorems for serial decompositions of normal diattenuators
147(1)
4.4 Other mathematical representations of the polarimetric properties of nondepolarizing systems
147(4)
4.4.1 Pure covariance matrix
148(1)
4.4.2 Covariance vector
r148
4.4.3 Jones operator
149(1)
4.4.4 The scattering matrix: Sinclair matrix and Kennaugh matrix
149(2)
4.5 Polar decomposition of a nondepolarizing system
151(4)
4.5.1 Application of the polar decomposition to an experimental example
154(1)
4.6 General serial decomposition of a nondepolarizing System
155(2)
4.7 Dual linear retarder transformation of a nondepolarizing system
157(1)
4.8 Constitutive vectors of a nondepolarizing Mueller matrix
158(1)
4.9 Invariant polarimetric quantities of a nondepolarizing Mueller matrix
159(2)
4.10 Particular forms of nondepolarizing Mueller matrices
161(3)
4.10.1 Normal pure Mueller matrices
161(1)
4.10.2 Nonnormal pure Mueller matrices
162(1)
4.10.3 Degenerate pure Mueller matrices
162(1)
4.10.4 Singular pure Mueller matrices
162(13)
4.10.4.1 Nonnormal elliptic polarizer
163(1)
4.11 Summary
164(3)
5 The concept of Mueller matrix 167(32)
5.1 Introduction
167(1)
5.2 The concept of Mueller matrix
168(2)
5.3 Covariance and coherency matrices associated with a Mueller matrix
170(5)
5.4 Changes of reference frame and rotated Mueller matrices
175(1)
5.5 Characterization of Mueller matrices: Covariance criterion
175(2)
5.5.1 Covariance criterion
175(1)
5.5.2 Explicit algebraic formulation of the covariance criterion
176(1)
5.6 Normal form of a Mueller matrix
177(7)
5.6.1 Type-I canonical Mueller matrix
178(2)
5.6.2 Type-II canonical Mueller matrix
180(3)
5.6.3 Covariance characterization of Mueller matrices through their normal form
183(1)
5.7 Reciprocity properties of Mueller matrices
184(1)
5.8 Passivity constraints for Mueller matrices
185(2)
5.9 Vectorial partitioned expression of a Mueller matrix
187(1)
5.10 Spectral and characteristiodecompositions of a Mueller matrix
187(2)
5.10.1 Spectral decomposition
187(1)
5.10.2 Characteristic decomposition
188(1)
5.11 Polarimetric purity of a Mueller matrix
189(7)
5.11.1 Norms of the covariance, coherency, and Mueller matrices
189(1)
5.11.2 Purity criterion
190(1)
5.11.3 Depolarization index and depolarizance
190(3)
5.11.4 Polarization entropy
193(1)
5.11.5 Lorentz depolarization indices
194(1)
5.11.6 Other overall measures of depolarization
195(4)
5.11.6.1 Average degree of depolarization
195(1)
5.11.6.2 Depolarization power
195(1)
5.11.6.3 Scalar metric Qf(M)
196(1)
5.12 Summary
196(3)
6 Physical quantities in a Mueller matrix 199(36)
6.1 Introduction
199(1)
6.2 Components of purity of a Mueller matrix
199(9)
6.2.1 Average intensity coefficient
200(1)
6.2.2 Diattenuation
200(1)
6.2.3 Reciprocal diattenuation
201(1)
6.2.4 Polarizance
202(1)
6.2.5 Reciprocal polarizance
203(1)
6.2.6 Degree of polarizance
203(1)
6.2.7 Components of diattenuation and polarizance
204(1)
6.2.8 Degree of spherical purity
204(2)
6.2.9 Physical significance of the components of purity
206(5)
6.2.9.1 Components of purity of polarizers and analyzers
206(1)
6.2.9.2 Components of purity of the canonical depolarizers
207(1)
6.3 Indices of polarimetric purity
208(3)
6.4 Invariant quantities of a Mueller matrix
211(4)
6.4.1 Dual retarder transformation
211(1)
6.4.2 Single retarder transformation
212(1)
6.4.3 Dual rotation transformation
213(1)
6.4.4 Single rotation transformation
214(1)
6.5 Purity space
215(6)
6.5.1 Purity space for the components of purity
215(1)
6.5.2 Classification of Mueller matrices according to the values of the components of purity
216(3)
6.5.3 Purity space for the indices of polarimetric purity
219(1)
6.5.4 Purity regions in the space of components of purity
220(1)
6.6 Anisotropy coefficients of a Mueller matrix
221(4)
6.7 From a nondepolarizing to a depolarizing Mueller matrix
225(8)
6.7.1 Synthesis of a type-I Mueller matrix
227(1)
6.7.2 Synthesis of a type-II Mueller matrix
228(4)
6.7.3 On the reference pure Mueller matrix
232(1)
6.7.4 Depolarization synthesis
232(1)
6.8 Summary
233(2)
7 Parallel decompositions of Mueller matrices 235(22)
7.1 Introduction
235(1)
7.2 Additive composition of Mueller matrices
235(2)
7.3 Arbitrary decomposition of a Mueller matrix
237(3)
7.3.1 Application of the arbitrary decomposition to an experimental example
239(1)
7.4 On the rank of the covariance matrix of a parallel composition
240(1)
7.5 Characteristic decomposition of a Mueller matrix
241(4)
7.5.1 Application of the characteristic decomposition to an experimental example
243(2)
7.6 Polarimetric subtraction of Mueller matrices
245(5)
7.6.1 Condition for polarimetric subtractability
245(1)
7.6.2 Polarimetric subtraction of a pure component
246(1)
7.6.3 Polarimetric subtraction of a pure component from a rank-two mixture
247(2)
7.6.4 Polarimetric subtraction of a depolarizing component
249(1)
7.7 Passivity constraints
250(1)
7.8 Optimum filtering of measured Mueller matrices
251(3)
7.9 Summary
254(3)
8 Serial decompositions of depolarizing Mueller matrices 257(34)
8.1 Introduction
257(1)
8.2 Generalized polar decomposition
257(5)
8.2.1 Forward decomposition of a nonsingular Mueller matrix
259(1)
8.2.2 Forward decomposition of a singular Mueller matrix
260(2)
8.2.3 Reverse decomposition of a Mueller matrix
262(1)
8.3 Symmetric decomposition
262(9)
8.3.1 Symmetric decomposition of a type-I Mueller matrix
263(5)
8.3.1.1 N not = to 0 and N' not = to 0
263(4)
8.3.1.2 N not = to 0 and N' = to 0
267(1)
8.3.1.3 N = to 0 and N' not = to 0
267(1)
8.3.1.4 N = N' = 0
267(1)
8.3.2 Symmetric decomposition of a type-II Mueller matrix
268(2)
8.3.3 Synthetic view of the symmetric decomposition procedure
270(1)
8.4 Passivity constraints in serial decompositions of depolarizing Mueller matrices
271(3)
8.4.1 Passivity constraints in the Lu-Chipman decomposition
271(1)
8.4.2 Passivity constraints in the symmetric decomposition
272(2)
8.5 Invariant-equivalent Mueller matrices
274(3)
8.5.1 Invariant-equivalent transformations
274(1)
8.5.2 Reduced forms of a Mueller matrix
275(1)
8.5.3 Invariant-equivalent transformation induced by the symmetric decomposition
276(1)
8.5.4 Kernel form of a Mueller matrix
276(1)
8.6 Arrow decomposition of a Mueller matrix
277(5)
8.6.1 Arrow form of a Mueller matrix
277(2)
8.6.2 Characterization of Mueller matrices through the arrow form
279(3)
8.6.2.1 Characterization of nonpolarizing Mueller matrices
280(1)
8.6.2.2 Characterization of symmetric Mueller matrices
280(1)
8.6.2.3 Characterization of a Mueller matrix through its reduced form
281(1)
8.7 Singular Mueller matrices
282(2)
8.7.1 Depolarizing polarizer
282(1)
8.7.2 Depolarizing analyzer
283(1)
8.7.3 Pure polarizer
283(1)
8.7.4 Singular depolarizer
283(1)
8.8 Serial-parallel decompositions
284(6)
8.8.1 Serial-parallel decomposition of a type-I Mueller matrix
284(3)
8.8.2 Serial-parallel decomposition of a type-II Mueller matrix
287(3)
8.9 Summary
290(1)
9 Differential Jones and Mueller matrices 291(42)
9.1 Introduction
291(1)
9.2 Differential Jones matrices and elementary polarization properties
291(9)
9.2.1 Evolution equation for continuous media
291(1)
9.2.2 Definition of the elementary polarization properties
292(4)
9.2.3 Elementary polarization properties and Jones matrices of homogeneous media
296(2)
9.2.4 Extraction of the elementary polarization properties from the Jones matrix
298(2)
9.3 Differential Mueller matrices
300(5)
9.3.1 Differential Mueller matrix of a nondepolarizing medium
300(2)
9.3.2 Mueller matrix of a homogeneous nondepolarizing medium
302(1)
9.3.3 Extraction of the elementary polarization properties from a nondepolarizing Mueller matrix
303(2)
9.4 Differential decomposition of Mueller matrices
305(14)
9.4.1 Differential Mueller matrix of a depolarizing medium
305(2)
9:4.2 Existence and multiplicity of the Mueller matrix logarithm
307(4)
9.4.3 Local physical realizability
311(3)
9.4.4 Algebraic structure of the differential Mueller matrix formalism
314(2)
9.4.5 Relation of the differential decomposition to the product decompositions of Mueller matrices
316(3)
9.5 Differential Mueller matrix of a homogeneous depolarizing medium
319(11)
9.5.1 Differential Mueller matrix of a fluctuating homogeneous medium
319(3)
9.5.2 Statistical and geometrical interpretation of the differential Mueller matrix
322(4)
9.5.3 Interpretation of canonical, general, and rotationally invariant depolarizers
326(3)
9.5.4 Relation between the differential 'Mueller matrix and the Mueller matrix logarithm
329(1)
9.6 Summary
330(3)
10 Geometric representation of Mueller matrices 333(30)
10.1 Introduction
333(1)
10.2 P-image and I-image of a Mueller matrix
334(2)
10.3 Representative ellipsoids of a Mueller matrix
336(3)
10.4 Ellipsoids associated with some special Mueller matrices
339(3)
10.4.1 Intrinsic depolarizer
340(1)
10.4.2 Type-I canonical depolarizer followed by a retarder
340(1)
10.4.3 Type-I canonical depolarizer followed by a normal diattenuator
341(1)
10.4.4 Type-II canonical depolarizer
341(1)
10.4.5 Type-II canonical depolarizer followed by a retarder
342(1)
10.4.6 Type-II canonical depolarizer followed by a normal diattenuator
342(1)
10.5 Characteristic ellipsoids of a depolarizing Mueller matrix
342(5)
10.5.1 Characteristic ellipsoids of a type-I Mueller matrix
343(3)
10.5.1.1 N not = to 0 and N' not = to 0 (D1 < 1, D2 < 1)
343(2)
10.5.1.2 N not - to 0 and N' = 0 (D1 = 1, D2 < 1)
345(1)
10.5.1.3 N = 0 and N' not = to 0 (D1 < 1, D2 = 1)
345(1)
10.5.1.4 D1 = D2 = 1
346(1)
10.5.2 Characteristic ellipsoids of a type-II Mueller matrix
346(1)
10.6 Intrinsic ellipsoids of a Mueller matrix
347(2)
10.6.1 Intrinsic ellipsoid of a Mueller matrix with D < 1 and P 1
348(1)
10.6.2 Intrinsic ellipsoid of a depolarizing analyzer
349(1)
10.6.3 Intrinsic ellipsoid of a depolarizing polarizer
349(1)
10.7 Topological properties of the characteristic ellipsoids
349(3)
10.7.1 Polarizers and analyzers
350(1)
10.7.1.1 Polarizers
350(1)
10.7.1.2 Analyzers
350(1)
10.7.1.3 Pure polarizers
350(1)
10.7.2 rank H = 1
350(1)
10.7.3 rank H = 2
350(1)
10.7.3.1 Type-I
350(1)
10.7.3.2 Type-II
351(1)
10.7.4 rank H=3
351(1)
10.7.4.1 Type-I
351(1)
10.7.4.2 Type-II
351(1)
10.7.5 rank H = 4
351(1)
10.8 Five-vector representation
352(2)
10.9 Geometric view of depolarization, diattenuation and polarizance
354(1)
10.9.1 Depolarization
354(1)
10.9.2 Polarizance and diattenuation (dichroism)
355(1)
10.9.3 Retardance (birefringence)
355(1)
10.10 Geometric representation of nondepolarizing Mueller matrices
355(4)
10.10.1 Two-vector representation
355(1)
10.10.2 Ellipsoid of a nondepblarizing Mueller matrix
355(4)
10.11 Experimental examples
359(2)
10.12 Summary
361(2)
References 363(12)
Index 375
José Jorge Gil is a professor at the University of Zaragoza, where he leads R&D projects in physics and e-learning technologies and methodologies. He has developed an original dual-rotating-retarder absolute Mueller polarimeter, introduced new concepts such as the depolarization index, and developed wireless systems for interactive meetings, which earned the Tecnova award from the Spanish Industry Ministry. Dr. Gil has also been a recipient of the G.G. Stokes Award from the International Society for Optics and Photonics (SPIE) in recognition of his "groundbreaking collection of rigorous mathematical descriptions of polarization that are used widely to interpret experimental data." He received his PhD in physics from the University of Zaragoza.

Razvigor Ossikovski is an associate professor at the Ecole Polytechnique, where he is the leader of the fundamental polarimetry and Raman spectroscopy activities in the Laboratory of Physics of Interfaces and Thin Films. His current research interests are the theory of polarimetry (Mueller matrix algebra) and experimental tip-enhanced Raman spectroscopy. He received his PhD in physics (materials science) from the Ecole Polytechnique.