Atnaujinkite slapukų nuostatas

Polymer Chemistry: International Student Edition 3rd edition [Kietas viršelis]

(Emeritus -Cal State Polytechnic University, Pomona, CA), (University of Minnesota-Twin Cities, Minneapolis, USA)
  • Formatas: Hardback, 662 pages, aukštis x plotis: 254x178 mm, weight: 1530 g, 48 Tables, black and white; 10 Illustrations, color; 455 Illustrations, black and white
  • Išleidimo metai: 14-Jul-2020
  • Leidėjas: CRC Press Inc
  • ISBN-10: 1466581646
  • ISBN-13: 9781466581647
Kitos knygos pagal šią temą:
  • Formatas: Hardback, 662 pages, aukštis x plotis: 254x178 mm, weight: 1530 g, 48 Tables, black and white; 10 Illustrations, color; 455 Illustrations, black and white
  • Išleidimo metai: 14-Jul-2020
  • Leidėjas: CRC Press Inc
  • ISBN-10: 1466581646
  • ISBN-13: 9781466581647
Kitos knygos pagal šią temą:
A well-rounded and articulate examination of polymer properties at the molecular level, Polymer Chemistry focuses on fundamental principles based on underlying chemical structures, polymer synthesis, characterization, and properties. It emphasizes the logical progression of concepts and provide mathematical tools as needed as well as fully derived problems for advanced calculations.

The much-anticipated Third Edition expands and reorganizes material to better develop polymer chemistry concepts and update the remaining chapters. New examples and problems are also featured throughout.

This revised edition:





Integrates concepts from physics, biology, materials science, chemical engineering, and statistics as needed Contains mathematical tools and step-by-step derivations for example problems Incorporates new theories and experiments using the latest tools and instrumentation and topics that appear prominently in current polymer science journals The number of homework problems has been greatly increased, to over 350 in all The worked examples and figures have been augmented More examples of relevant synthetic chemistry have been introduced into Chapter 2 ("Step-Growth Polymers") More details about atom-transfer radical polymerization and reversible addition/fragmentation chain-transfer polymerization have been added to Chapter 4 ("Controlled Polymerization") Chapter 7 (renamed "Thermodynamics of Polymer Mixtures") now features a separate section on thermodynamics of polymer blends Chapter 8 (still called "Light Scattering by Polymer Solutions") has been supplemented with an extensive introduction to small-angle neutron scattering

Polymer Chemistry, Third Edition offers a logical presentation of topics that can be scaled to meet the needs of introductory as well as more advanced courses in chemistry, materials science, polymer science, and chemical engineering.
Preface to the Third Edition xiii
Chapter 1 Introduction to Chain Molecules
1(42)
1.1 Introduction
1(2)
1.2 How Big is Big?
3(4)
1.2.1 Molecular Weight
3(2)
1.2.2 Spatial Extent
5(2)
1.3 Linear and Branched Polymers, Homopolymers, and Copolymers
7(3)
1.3.1 Branched Structures
7(1)
1.3.2 Copolymers
8(2)
1.4 Addition, Condensation, and Naturally Occurring Polymers
10(8)
1.4.1 Addition and Condensation Polymers
11(2)
1.4.2 Natural Polymers
13(5)
1.5 Polymer Nomenclature
18(2)
1.6 Structural Isomerism
20(5)
1.6.1 Positional Isomerism
20(1)
1.6.2 Stereo Isomerism
21(2)
1.6.3 Geometrical Isomerism
23(2)
1.7 Molecular Weights and Molecular Weight Averages
25(6)
1.7.1 Number-, Weight-, and z-Average Molecular Weights
25(2)
1.7.2 Dispersity and Standard Deviation
27(2)
1.7.3 Examples of Distributions
29(2)
1.8 Measurement of Molecular Weight
31(5)
1.8.1 General Considerations
31(1)
1.8.2 End Group Analysis
32(2)
1.8.3 MALDI Mass Spectrometry
34(2)
1.9 Preview of Things to Come
36(1)
1.10
Chapter Summary
37(6)
Problems
38(2)
References
40(1)
Further Readings
41(2)
Chapter 2 Step-Growth Polymerization
43(40)
2.1 Introduction
43(1)
2.2 Condensation Polymers: One Step at a Time
43(6)
2.2.1 Classes of Step-Growth Polymers
43(1)
2.2.2 A First Look at the Distribution of Products
44(2)
2.2.3 A First Look at Reactivity and Reaction Rates
46(3)
2.3 Kinetics of Step-Growth Polymerization
49(7)
2.3.1 Catalyzed Step-Growth Reactions
50(1)
2.3.2 How Should Experimental Data Be Compared with Theoretical Rate Laws?
51(2)
2.3.3 Uncatalyzed Step-Growth Reactions
53(3)
2.4 Distribution of Molecular Sizes
56(5)
2.4.1 Mole Fractions of Species
57(1)
2.4.2 Weight Fractions of Species
58(3)
2.5 Polyesters
61(4)
2.6 Polyamides
65(3)
2.7 Other Examples of Important Step-growth Polymers
68(3)
2.7.1 Polycarbonates
68(1)
2.7.2 Polyimides
69(1)
2.7.3 Polyurethanes
69(1)
2.7.4 Polysiloxanes
70(1)
2.7.5 Polythiophenes
71(1)
2.8 Stoichiometric Imbalance
71(4)
2.9
Chapter Summary
75(8)
Problems
76(6)
References
82(1)
Further Readings
82(1)
Chapter 3 Chain-Growth Polymerization
83(42)
3.1 Introduction
83(1)
3.2 Chain-Growth and Step-Growth Polymerizations: Some Comparisons
83(2)
3.3 Initiation
85(7)
3.3.1 Initiation Reactions
86(1)
3.3.2 Fate of Free Radicals
87(2)
3.3.3 Kinetics of Initiation
89(2)
3.3.4 Temperature Dependence of Initiation Rates
91(1)
3.4 Termination
92(5)
3.4.1 Combination and Disproportionation
92(2)
3.4.2 Effect of Termination on Conversion to Polymer
94(1)
3.4.3 Steady-State Radical Concentration
95(2)
3.5 Propagation
97(6)
3.5.1 Rate Laws for Propagation
97(2)
3.5.2 Temperature Dependence of Propagation Rates
99(2)
3.5.3 Kinetic Chain Length
101(2)
3.6 Radical Lifetime
103(3)
3.7 Distribution of Molecular Weights
106(5)
3.7.1 Distribution of i-mers: Termination by Disproportionation
106(3)
3.7.2 Distribution of i-mers: Termination by Combination
109(2)
3.8 Chain Transfer
111(6)
3.8.1 Chain Transfer Reactions
111(2)
3.8.2 Evaluation of Chain Transfer Constants
113(2)
3.8.3 Chain Transfer to Polymer
115(1)
3.8.4 Suppressing Polymerization
116(1)
3.9
Chapter Summary
117(8)
Problems
118(6)
References
124(1)
Further Readings
124(1)
Chapter 4 Controlled Polymerization
125(54)
4.1 Introduction
125(1)
4.2 Poisson Distribution for an Ideal Living Polymerization
126(8)
4.2.1 Kinetic Scheme
127(3)
4.2.2 Breadth of the Poisson Distribution
130(4)
4.3 Anionic Polymerization
134(4)
4.4 Block Copolymers, End-Functional Polymers, and Branched Polymers by Anionic Polymerization
138(9)
4.4.1 Block Copolymers
138(4)
4.4.2 End-Functional Polymers
142(2)
4.4.3 Regular Branched Architectures
144(3)
4.5 Cationic Polymerization
147(5)
4.5.1 Aspects of Cationic Polymerization
147(3)
4.5.2 Living Cationic Polymerization
150(2)
4.6 Controlled Radical Polymerization
152(8)
4.6.1 General Principles of Controlled Radical Polymerization
153(1)
4.6.2 Particular Realizations of Controlled Radical Polymerization
154(1)
4.6.2.1 Atom Transfer Radical Polymerization (ATRP)
155(1)
4.6.2.2 Stable Free-Radical Polymerization (SFRP)
156(1)
4.6.2.3 Reversible Addition-Fragmentation Chain-Transfer (RAFT) Polymerization
157(3)
4.7 Polymerization Equilibrium
160(3)
4.8 Ring-Opening Polymerization (ROP)
163(6)
4.8.1 General Aspects
163(2)
4.8.2 Specific Examples of Living Ring-Opening Polymerizations
165(1)
4.8.2.1 Polyethylene oxide)
165(1)
4.8.2.2 Polylactide
166(1)
4.8.2.3 Poly(dimethylsiloxane)
167(1)
4.8.2.4 Ring-Opening Metathesis Polymerization (ROMP)
168(1)
4.9 Dendrimers
169(4)
4.10
Chapter Summary
173(6)
Problems
174(2)
References
176(1)
Further Readings
177(2)
Chapter 5 Copolymers, Microstructure, and Stereoregularity
179(56)
5.1 Introduction
179(1)
5.2 Copolymer Composition
180(5)
5.2.1 Rate Laws
180(2)
5.2.2 Composition versus Feedstock
182(3)
5.3 Reactivity Ratios
185(4)
5.3.1 Effects of r Values
185(2)
5.3.2 Relation of Reactivity Ratios to Chemical Structure
187(2)
5.4 Resonance and Reactivity
189(5)
5.5 A Closer Look at Microstructure
194(7)
5.5.1 Sequence Distributions
195(4)
5.5.2 Terminal and Penultimate Models
199(2)
5.6 Copolymer Composition and Microstructure: Experimental Aspects
201(8)
5.6.1 Evaluating Reactivity Ratios from Composition Data
201(2)
5.6.2 Spectroscopic Techniques
203(2)
5.6.3 Sequence Distribution: Experimental Determination
205(4)
5.7 Characterizing Stereoregularity
209(3)
5.8 A Statistical Description of Stereoregularity
212(4)
5.9 Assessing Stereoregularity by Nuclear Magnetic Resonance
216(5)
5.10 Ziegler--Natta Catalysts
221(3)
5.11 Single-Site Catalysts
224(3)
5.12
Chapter Summary
227(8)
Problems
228(4)
References
232(1)
Further Readings
233(2)
Chapter 6 Polymer Conformations
235(36)
6.1 Conformations, Bond Rotation, and Polymer Size
235(2)
6.2 Average End-to-End Distance for Model Chains
237(4)
Case 6.2.1 The Freely Jointed Chain
238(1)
Case 6.2.2 The Freely Rotating Chain
239(2)
Case 6.2.3 Hindered Rotation Chain
241(1)
6.3 Characteristic Ratio and Statistical Segment Length
241(4)
6.4 Semiflexible Chains and the Persistence Length
245(4)
6.4.1 Persistence Length of Flexible Chains
246(1)
6.4.2 Worm-Like Chains
247(2)
6.5 Radius of Gyration
249(5)
6.6 Distributions for End-to-End Distance and Segment Density
254(7)
6.6.1 Distribution of the End-to-End Vector
255(2)
6.6.2 Distribution of the End-to-End Distance
257(1)
6.6.3 Distribution about the Center of Mass
258(3)
6.7 Spheres, Rods, Coils, and Chain Overlap
261(2)
6.8 Self-Avoiding Chains: A First Look
263(1)
6.9
Chapter Summary
264(7)
Problems
265(4)
References
269(1)
Further Readings
269(2)
Chapter 7 Thermodynamics of Polymer Mixtures
271(54)
7.1 Review of Thermodynamic and Statistical Thermodynamic Concepts
271(2)
7.2 Regular Solution Theory
273(5)
7.2.1 Regular Solution Theory: Entropy of Mixing
274(2)
7.2.2 Regular Solution Theory: Enthalpy of Mixing
276(2)
7.3 Flory--Huggins Theory
278(5)
7.3.1 Flory--Huggins Theory: Entropy of Mixing by a Quick Route
279(1)
7.3.2 Flory--Huggins Theory: Entropy of Mixing by a Longer Route
280(2)
7.3.3 Flory--Huggins Theory: Enthalpy of Mixing
282(1)
7.3.4 Flory--Huggins Theory: Summary of Assumptions
283(1)
7.4 Osmotic Pressure
283(8)
7.4.1 Osmotic Pressure: General Case
284(5)
7.4.2 Osmotic Pressure: Flory--Huggins Theory
289(2)
7.5 Phase Behavior of Polymer Solutions
291(11)
7.5.1 Overview of the Phase Diagram
291(3)
7.5.2 Finding the Binodal
294(1)
7.5.3 Finding the Spinodal
295(1)
7.5.4 Finding the Critical Point
296(2)
7.5.5 Phase Diagram from Flory--Huggins Theory
298(4)
7.6 Flory--Huggins Theory for Binary Polymer Blends
302(2)
7.7 What's in Χ?
304(6)
7.7.1 Χ from Regular Solution Theory
304(3)
7.7.2 Χ from Experiment
307(1)
7.7.3 Further Approaches to Χ
308(2)
7.8 Excluded Volume and Chains in a Good Solvent
310(4)
7.9
Chapter Summary
314(11)
Problems
315(9)
References
324(1)
Further Readings
324(1)
Chapter 8 Light Scattering by Polymer Solutions
325(52)
8.1 Introduction: Light Waves
325(3)
Basic Concepts of Scattering
327(1)
8.2 Basic Concepts of Scattering
328(4)
8.2.1 Scattering from Randomly Placed Objects
328(1)
8.2.2 Scattering from a Perfect Crystal
328(1)
8.2.3 Origins of Incoherent and Coherent Scattering
329(1)
8.2.4 Bragg's Law and the Scattering Vector
330(2)
8.3 Scattering by an Isolated Small Molecule
332(2)
8.4 Scattering from a Dilute Polymer Solution
334(6)
8.5 The Form Factor and the Zimm Equation
340(8)
8.5.1 Mathematical Expression for the Form Factor
341(2)
8.5.2 Form Factor for Isotropic Solutions
343(1)
8.5.3 Form Factor as qRg→0
344(1)
8.5.4 Zimm Equation
344(1)
8.5.5 Zimm Plot
345(3)
8.6 Scattering Regimes and Particular Form Factors
348(2)
8.7 Experimental Aspects of Light Scattering
350(5)
8.7.1 Instrumentation
351(2)
8.7.2 Calibration
353(1)
8.7.3 Samples and Solutions
354(1)
8.7.4 Refractive Index Increment
355(1)
8.8 Introduction to Small-Angle Neutron Scattering
355(11)
8.8.1 Basics of the SANS Process and SANS Instrumentation
356(4)
8.8.2 SANS from Polymer Blends
360(1)
Case 8.8.1 An Isotope Blend
361(2)
Case 8.8.2 A Non-interacting Binary Blend
363(1)
Case 8.8.3 A Binary Blend with Interactions
364(2)
8.9
Chapter Summary
366(11)
Problems
366(10)
References
376(1)
Further Readings
376(1)
Chapter 9 Dynamics of Dilute Polymer Solutions
377(62)
9.1 Introduction: Friction and Viscosity
377(4)
9.2 Stokes' Law and Einstein's Law
381(4)
9.2.1 Viscous Forces on Rigid Spheres
381(1)
9.2.2 Suspension of Spheres
382(3)
9.3 Intrinsic Viscosity
385(8)
9.3.1 General Considerations
385(1)
9.3.2 Mark--Houwink Equation
386(6)
9.3.3 Relation between Coil Overlap Concentration, c, and Intrinsic Viscosity
392(1)
9.4 Measurement of Viscosity
393(5)
9.4.1 Poiseuille Equation and Capillary Viscometers
393(4)
9.4.2 Concentric Cylinder Viscometers
397(1)
9.5 Diffusion Coefficient and Friction Factor
398(8)
9.5.1 Tracer Diffusion and Hydrodynamic Radius
399(1)
9.5.2 Mutual Diffusion and Fick's Laws
400(6)
9.6 Dynamic Light Scattering (DLS)
406(3)
9.7 Hydrodynamic Interactions and Draining
409(3)
9.8 Size Exclusion Chromatography (SEC)
412(13)
9.8.1 Basic Separation Process
413(4)
9.8.2 Separation Mechanism
417(2)
9.8.3 Two Calibration Strategies
419(3)
9.8.4 Size Exclusion Chromatography Detectors
422(3)
9.9
Chapter Summary
425(14)
Problems
425(12)
References
437(1)
Further Readings
438(1)
Chapter 10 Networks, Gels, and Rubber Elasticity
439(42)
10.1 Formation of Networks by Random Cross-Linking
439(4)
10.1.1 Definitions
439(2)
10.1.2 Gel Point
441(2)
10.2 Polymerization with Multifunctional Monomers
443(7)
10.2.1 Calculation of the Branching Coefficient
445(1)
10.2.2 Gel Point
446(1)
10.2.3 Molecular-Weight Averages
447(3)
10.3 Elastic Deformation
450(2)
10.4 Thermodynamics of Elasticity
452(4)
10.4.1 Equation of State
452(2)
10.4.2 Ideal Elastomers
454(1)
10.4.3 Some Experiments on Real Rubbers
455(1)
10.5 Statistical Mechanical Theory of Rubber Elasticity: Ideal Case
456(6)
10.5.1 Force to Extend a Gaussian Chain
457(2)
10.5.2 Network of Gaussian Strands
459(1)
10.5.3 Modulus of the Affine Gaussian Network
460(2)
10.6 Further Developments in Rubber Elasticity
462(7)
10.6.1 Non-Gaussian Force Law
463(2)
10.6.2 Front Factor
465(1)
10.6.3 Network Detects
466(2)
10.6.4 Mooney-Rivlin Equation
468(1)
10.7 Swelling of Gels
469(5)
10.7.1 Modulus of a Swollen Rubber
470(1)
10.7.2 Swelling Equilibrium
471(3)
10.8
Chapter Summary
474(7)
Problems
475(4)
References
479(1)
Further Readings
479(2)
Chapter 11 Linear Viscoelasticity
481(52)
11.1 Basic Concepts
481(4)
11.1.1 Stress and Strain
483(1)
11.1.2 Viscosity, Modulus, and Compliance
483(1)
11.1.3 Viscous and Elastic Responses
484(1)
11.2 Response of the Maxwell and Voigt Elements
485(8)
11.2.1 Transient Response: Stress Relaxation
485(2)
11.2.2 Transient Response: Creep
487(2)
11.2.3 Dynamic Response: Loss and Storage Moduli
489(3)
11.2.4 Dynamic Response: Complex Modulus and Complex Viscosity
492(1)
11.3 Boltzmann Superposition Principle
493(1)
11.4 Bead-Spring Model
494(8)
11.4.1 Ingredients of the Bead-Spring Model
495(1)
11.4.2 Predictions of the Bead-Spring Model
496(6)
11.5 Zimm Model for Dilute Solutions, Rouse Model for Unentangled Melts
502(4)
11.6 Phenomenology of Entanglement
506(7)
11.6.1 Rubbery Plateau
506(3)
11.6.2 Dependence of Me on Molecular Structure
509(4)
11.7 Reptation Model
513(7)
11.7.1 Reptation Model: Longest Relaxation Time and Diffusivity
513(4)
11.7.2 Reptation Model: Viscoelastic Properties
517(2)
11.7.3 Reptation Model: Additional Relaxation Processes
519(1)
11.8 Aspects of Experimental Rheometry
520(3)
11.8.1 Shear Sandwich and Cone and Plate Rheometers
521(1)
11.8.2 Further Comments about Rheometry
522(1)
11.9
Chapter Summary
523(10)
Problems
524(7)
References
531(1)
Further Readings
531(2)
Chapter 12 Glass Transition
533(48)
12.1 Introduction
533(3)
12.1.1 Definition of a Glass
533(1)
12.1.2 Glass and Melting Transitions
534(2)
12.2 Thermodynamic Aspects of the Glass Transition
536(6)
12.2.1 First-Order and Second-Order Phase Transitions
537(2)
12.2.2 Kauzmann Temperature
539(1)
12.2.3 Theory of Gibbs and DiMarzio
540(2)
12.3 Locating the Glass Transition Temperature
542(5)
12.3.1 Dilatometry
542(2)
12.3.2 Calorimetry
544(2)
12.3.3 Dynamic Mechanical Analysis
546(1)
12.4 Free Volume Description of the Glass Transition
547(6)
12.4.1 Temperature Dependence of the Free Volume
547(2)
12.4.2 Free Volume Changes Inferred from the Viscosity
549(2)
12.4.3 Williams--Landel--Ferry Equation
551(2)
12.5 Time-Temperature Superposition
553(6)
12.6 Factors that Affect the Glass Transition Temperature
559(4)
12.6.1 Dependence on Chemical Structure
559(1)
12.6.2 Dependence on Molecular Weight
559(1)
12.6.3 Dependence on Composition
560(3)
12.7 Mechanical Properties of Glassy Polymers
563(9)
12.7.1 Basic Concepts
564(2)
12.7.2 Crazing, Yielding, and the Brittle-to-Ductile Transition
566(2)
12.7.3 Role of Chain Stiffness and Entanglements
568(4)
12.8
Chapter Summary
572(9)
Problems
572(8)
References
580(1)
Further Readings
580(1)
Chapter 13 Crystalline Polymers
581(58)
13.1 Introduction and Overview
581(2)
13.2 Structure and Characterization of Unit Cells
583(7)
13.2.1 Classes of Crystals
583(1)
13.2.2 X-ray Diffraction
584(3)
13.2.3 Examples of Unit Cells
587(3)
13.3 Thermodynamics of Crystallization: Relation of Melting Temperature to Molecular Structure
590(5)
13.4 Structure and Melting of Lamellae
595(10)
13.4.1 Surface Contributions to Phase Transitions
595(1)
13.4.2 Dependence of Tm on Lamellar Thickness
596(4)
13.4.3 Dependence of Tm on Molecular Weight
600(1)
13.4.4 Experimental Characterization of Lamellar Structure
601(4)
13.5 Kinetics of Nucleation and Growth
605(9)
13.5.1 Primary Nucleation
606(4)
13.5.2 Crystal Growth
610(4)
13.6 Morphology of Semicrystalline Polymers
614(6)
13.6.1 Spherulites
614(4)
13.6.2 Nonspherulitic Morphologies
618(2)
13.7 Kinetics of Bulk Crystallization
620(10)
13.7.1 Avrami Equation
621(5)
13.7.2 Kinetics of Crystallization: Experimental Aspects
626(4)
13.8
Chapter Summary
630(9)
Problems
631(7)
References
638(1)
Further Readings
638(1)
Appendix 639(8)
Index 647
Timothy P. Lodge, Regents Professor, University of Minnesota