Atnaujinkite slapukų nuostatas

Polymer Electrolyte Fuel Cells: Science, Applications, and Challenges [Kietas viršelis]

Edited by (CEA, Grenoble, France)
  • Formatas: Hardback, 616 pages, aukštis x plotis: 229x152 mm, weight: 975 g, 13 Illustrations, color; 229 Illustrations, black and white
  • Išleidimo metai: 09-Jul-2013
  • Leidėjas: Pan Stanford Publishing Pte Ltd
  • ISBN-10: 9814310824
  • ISBN-13: 9789814310826
Kitos knygos pagal šią temą:
  • Formatas: Hardback, 616 pages, aukštis x plotis: 229x152 mm, weight: 975 g, 13 Illustrations, color; 229 Illustrations, black and white
  • Išleidimo metai: 09-Jul-2013
  • Leidėjas: Pan Stanford Publishing Pte Ltd
  • ISBN-10: 9814310824
  • ISBN-13: 9789814310826
Kitos knygos pagal šią temą:

This book focuses on the recent research progress on the fundamental understanding of the materials degradation phenomena in PEFC, for automotive applications. On a multidisciplinary basis, through contributions of internationally recognized researchers in the field, this book provides a complete critical review on crucial scientific topics related to PEFC materials degradation, and ensures a strong balance between experimental and theoretical analysis and preparation techniques with several practical applications for both the research and the industrial communities.

Preface xvii
1 PEMFC Technologies for Automotive Applications
1(28)
Nicolas Fouquet
1.1 A Brief History of PEMFC for the Automotive Industry
2(5)
1.1.1 Early Prototypes: 1960-2000
2(2)
1.1.2 Coming of Age: 2000-2005
4(1)
1.1.3 Production-Ready Passenger Vehicles: 2005-2010
5(1)
1.1.4 Fuel Cell Development at PSA Peugeot Citroen
6(1)
1.2 Automotive Requirements for PEM Fuel Cell Power Plants
7(3)
1.2.1 Performance Target
7(1)
1.2.1.1 The fuel cell electric vehicle
7(1)
1.2.1.2 The range extender
8(1)
1.2.2 Cost Target
8(1)
1.2.3 Conclusion
9(1)
1.3 The Importance of Reliable Modeling Tools
10(1)
1.3.1 3D Computational Fluid Dynamics Modeling
10(1)
1.3.1.1 Motivation and background
10(1)
1.3 1.2 Reactants' flow inside bipolar plate channels
11(16)
1.3.1.3 Transport phenomena in the gas diffusion layers
12(1)
1.3.1.4 Reaction kinetics in the active layers
13(1)
1.3.1.5 Transport phenomena through the membrane
14(1)
1.3.1.6 Application example: performance scale-up
14(2)
1.3.1.7 Application example: bipolar plate design
16(1)
1.3.1.8 Conclusion and further development
17(1)
1.3.2 Zero-Dimensional Dynamic Modeling
17(1)
1.3.2.1 Motivation and background
17(5)
1.3.2.2 Fuel cell's impedance model
22(2)
1.3.2.3 Time-resolved EIS measurements
24(1)
1.3.2.4 Experimental validation
25(1)
1.3.2.5 Limitation and further development
26(1)
1.4 Conclusion
27(2)
2 Advanced Technologies for Efficient and Low Catalyst Loading Electrodes
29(64)
Pascal Fugier
Etienne Quesnel
Sebastien Donet
2.1 Introduction
29(1)
2.2 CVD and Precursors Approach
30(9)
2.2.1 Introduction
30(3)
2.2.2 Precursors Chemistry
33(2)
2.2.3 Precursor Characterization
35(1)
2.2.3.1 Physicochemical characterization of the precursors
36(3)
2.3 Principles of CVD Process: MOCVD
39(30)
2.3.1 Definition
39(1)
2.3.2 Direct Liquid Injection MOCVD Method
40(1)
2.3.2.1 Introduction
40(1)
2.3.2.2 Typical DLI-MOCVD catalyst
41(2)
2.3.2.3 The precursors
43(1)
2.3.2.4 The carrier gas
44(1)
2.3.2.5 The substrate
45(1)
2.3.2.6 The solvent
45(2)
23.2.7 Nucleation and growth
47(1)
2.3.2.8 Precursor oversaturation
47(1)
2.3.3 Fluidized Bed --- MOCVD
48(1)
2.3.3.1 Introduction
48(2)
2.3.3.2 Injection system
50(1)
2.3.4 Experimental Results
51(1)
2.3.4.1 Platinum deposition
51(6)
2.3.4.2 Bimetallic electrodes
57(2)
2.3.4.3 Durability tests
59(6)
2.3.5 MOCVD Evolution: Solvent Substitution
65(1)
2.3.6 MOCVD Technico-Economical Survey
66(1)
2.3.6.1 MOCVD industrial prototype
67(1)
2.3.6.2 Details on the evaporation-injection system
68(1)
2.3.6.3 Details on the FB-system (deposition chamber + pumping group + panel control)
68(1)
2.4 Physical Vapor Deposition
69(24)
2.4.1 Preliminary Considerations on PVD
70(2)
2.4.2 Conventional PVD for PEMFC: State of the Art
72(1)
2.4.2.1 Standard sputtering process for Pt deposition
72(4)
2.4.2.2 Optimized sputtering process for Pt deposition
76(3)
2.4.2.3 Sputtering process for Pt alloys
79(3)
2.4.2.4 Conclusion
82(1)
2.4.3 Advanced PVD Techniques
82(1)
2.4.3.1 Catalyst synthesis in a nanocluster source
83(1)
2.4.3.2 PEMFC electrodes catalyzed with a nanocluster source
84(9)
3 Electrocatalysis on Shape-Controlled Pt Nanoparticles
93(60)
J. Solla-Gullon
F. J. Vidal-Iglesias
E Herrero
J. M. Feliu
A. Aldaz
3.1 Introduction
93(3)
3.2 Synthesis of Shape-Controlled Pt Nanoparticles
96(2)
3.3 Correlation between Surface Structure and Nanoparticle Shape
98(5)
3.4 Electrocatalysis on Shape-Controlled Pt Nanoparticles
103(30)
3.4.1 So-Called Hydrogen Adsorption-Desorption Process
105(19)
3.4.2 CO Electrooxidation
124(4)
3.4.3 O2 Reduction
128(5)
3.5 Additional Remarks
133(1)
3.6 Conclusions and Outlook
133(20)
4 Ex situ Electrochemical Methods for the Characterization of PEFC Nanomaterial Degradation
153(80)
Deborah J. Myers
Xiaoping Wang
4.1 Introduction
153(6)
4.1.1 Benefits of ex situ Techniques
153(1)
4.1.2 Aqueous Acidic Electrolyte: Applicability to the Fuel Cell Environment
154(1)
4.1.2.1 Electrocatalytic activity
154(2)
4.1.2.2 Performance degradation
156(3)
4.2 Electrochemical Techniques
159(15)
4.2.1 Voltammetry
159(2)
4.2.1.1 Catalyst electrochemically active surface area determination
161(4)
4.2.1.2 Pt and Pt alloy oxide formation
165(2)
4.2.1.3 Carbon support voltammetry
167(4)
4.2.2 Chronoamperometry
171(1)
4.2.3 Electrochemical Impedance Spectroscopy
172(2)
4.3 Ex situ Techniques/Configurations
174(26)
4.3.1 Non-Hydrodynamic Methods
175(1)
4.3.2 Hydrodynamic Methods
176(2)
4.3.2.1 Rotating ring and ring-disk electrodes
178(6)
4.3.2.2 Channel flow double electrode cell
184(1)
4.3.2.3 Requirements for thin-film electrodes for hydrodynamic techniques
185(1)
4.3.3 Hybrid Techniques
186(1)
4.3.3.1 Electrochemical quartz crystal micro and nanobalance
186(2)
4.3.3.2 Differential electrochemical mass spectrometry
188(2)
4.3.3.3 X-ray spectroscopy and scattering
190(7)
4.3.3.4 Spectroelectrochemical Fourier transform infrared spectroscopy
197(3)
4.3.3.5 Other hybrid techniques
200(1)
4.4 Accelerated Electrochemical Stress Tests for PEFC Nanomaterial Durability
200(3)
4.5 Examples of Electrochemical Characterization of PEFC Nanomaterial Degradation
203(30)
5 Microstructural Characterization Methods of PEMFC Electrode Materials
233(44)
Zhong Xie
5.1 Introduction
233(2)
5.2 Catalyst/Support and Electrode Characterization for PEMFC
235(14)
5.2.1 2D Electron Microscopy Techniques
236(2)
5.2.2 3D Electron Tomography Technique
238(4)
5.2.3 Porosimetry
242(2)
5.2.4 BET Nitrogen Adsorption-Desorption
244(2)
5.2.5 X-Ray Photoelectron Spectroscopy
246(3)
5.3 Structural Characterization of Polymer Electrolyte Materials
249(17)
5.3.1 SAXS/SANS
250(2)
5.3.2 AFM
252(3)
5.3.3 3D Tomography
255(1)
5.3.3.1 TEM tomography
256(1)
5.3.3.2 Focused ion beam tomography
256(2)
5.3.3.3 X-ray tomography
258(1)
5.3.4 Fourier Transform Infrared Spectroscopy
259(2)
5.3.5 Nuclear Magnetic Resonance Spectroscopy
261(3)
5.3.6 X-Ray Photoelectron Spectroscopy
264(1)
5.3.7 X-Ray Diffraction
265(1)
5.4 Prospective and Outlook
266(11)
6 Instability of Nanomaterials in PEFC Environments: A State of the Art
277(64)
Sarah Ball
6.1 Introduction
278(1)
6.2 Decay Mechanisms at PEFC Cathode
279(41)
6.2.1 Factors Influencing Surface Area Loss and
Performance Decay in High-Surface-Area Pt/C Catalysts
282(1)
6.2.1.1 Pt dissolution/re-precipitation Ostwald ripening and Pt re-precipitation in the electrolyte phase
282(4)
6.2.1.2 Pt detachment from the carbon support
286(2)
6.2.1.3 Agglomeration of Pt particles
288(1)
6.2.1.4 Effect of voltage cycle regime
289(6)
6.2.2 Benefits of Pt Alloys Over High-Surface-Area Pt-Only Catalysts at the PEMFC Cathode
295(1)
6.2.2.1 Activity and cost benefit of Pt alloys vs. Pt only
295(5)
6.2.2.2 Binary and ternary alloys --- influence of alloying element on stability
300(1)
6.2.2.3 Binary alloys --- effects of de-alloying and acid leaching
301(10)
6.2.2.4 Ternary alloys at the PEMFC cathode --- stability and performance benefits
311(1)
6.2.2.5 Alternative precious metal (non-Pt) alloys for the ORR --- activity and stability
312(1)
6.2.3 Core-Shell Catalysts and Novel Structures for the PEMFC Cathode
313(5)
6.2.4 Non-Precious Metal ORR Catalysts
318(2)
6.3 Decay Mechanisms at the PEMFC Anode --- Hydrogen and Reformate
320(10)
6.3.1 Factors Influencing Surface Area Loss and Performance of High-Surface-Area Pt/C Anodes
322(3)
6.3.2 Benefits of Pt Alloys Over High-Surface-Area Pt-Only Catalysts at the PEMFC Anode --- Tolerance to Impurities, Cost Reduction, and Durability
325(4)
6.3.3 Durability Implications of Alternative Strategies to Achieve CO Tolerance --- Air/Oxidant Bleeding, Increased Temperature, and Bilayer Structures
329(1)
6.3.4 Use of Non-Platinum and Non-Precious Metal Catalysts at the PEMFC Anode for HOR
330(1)
6.4 Conclusions and Outlook
330(11)
7 Innovative Support Materials for Low-Temperature Fuel Cell Catalysts
341(60)
Ernesto Rafael Gonzalez
Ermete Antolini
7.1 Introduction
341(3)
7.2 Carbon
344(11)
7.2.1 Ordered Mesoporous Carbons
347(3)
7.2.2 Carbon Nanotubes (CNTs]
350(5)
7.3 Ceramic
355(20)
7.3.1 inorganic Metal Oxides
355(1)
7.3.1.1 Ti-based oxides
355(5)
7.3.1.2 Sn-based oxides
360(4)
7.3.1.3 WOx
364(4)
7.3.1.4 RuO2-xH2O
368(1)
7.3.2 Tungsten Carbides
369(6)
7.4 Polymer
375(14)
7.4.1 PAni
375(5)
7.4.2 PPy
380(4)
7.4.3 PTh
384(5)
7.5 Conclusions
389(12)
7.5.1 Carbon Materials
389(1)
7.5.2 Ceramic Materials
390(1)
7.5.3 Polymer Materials
390(11)
8 Membrane Degradation Mechanisms in a Polymer Electrolyte Fuel Cell
401(26)
Panagiotis Trogadas
Thomas F. Fuller
8.1 Introduction
401(1)
8.2 Mechanical Degradation
402(1)
8.3 Thermal Degradation
403(6)
8.4 Chemical Degradation of PEM
409(5)
8.5 Role of Metal Impurities in Chemical Degradation
414(1)
8.6 Evidence of Preferential Degradation
414(1)
8.7 Experimental Measurement of Chemical Degradation
415(1)
8.8 Concluding Remarks
415(12)
9 Effects of Fuel and Air Impurities on PEFC Performance
427(60)
Eben Dy
Zheng Shi
Khalid Fatih
Jiujun Zhang
Zhong-Sheng Liu
9.1 Introduction
428(1)
9.2 Fuel Side Impurities
429(17)
9.2.1 Sources of Fuel Impurities
429(1)
9.2.2 Carbon Oxides Poisoning
430(1)
9.2.2.1 Carbon monoxide impacts
430(4)
9.2.2.2 Carbon monoxide contamination mechanism
434(2)
9.2.2.3 Carbon dioxide contamination
436(1)
9.2.3 Hydrogen Sulfide Poisoning
437(1)
9.2.3.1 Hydrogen sulfide impacts
437(2)
9.2.3.2 Hydrogen sulfide contamination mechanism
439(2)
9.2.4 Ammonia
441(1)
9.2.4.1 NH3 impacts
441(1)
9.2.4.2 NH3 poisoning mechanism
442(2)
9.2.7 Multi-Contaminants Impacts
444(2)
9.3 Air Side Impurities
446(14)
9.3.1 Sources of Impurities
446(1)
9.3.2 Sulfur Oxides
447(1)
9.3.2.1 SOx impacts
447(2)
9.3.2.2 SOx contamination mechanism
449(2)
9.3.3 Nitrogen Oxides (NOx)
451(1)
9.3.3.1 NOx impacts
451(1)
9.3.3.2 NOx contamination mechanism
452(2)
9.3.4 Hydrogen Sulfide and Ammonia
454(1)
9.3.4.1 H2S and NH3 impacts
454(1)
9.3.4.2 H2S and NH3 contamination mechanism
455(1)
9.3.5 Volatile Organic Compounds and Salt (NaCl)
456(1)
9.3.5.1 Volatile organic compounds
456(2)
9.3.5.2 NaCl/Na+ and Cl- ions
458(2)
9.4 Mitigation Strategy
460(9)
9.4.1 Fuel-Side Mitigation
460(1)
9.4.1.1 Pre-treatment of reformate
460(1)
9.4.1.2 Air/Oxygen bleeding
461(1)
9.4.1.3 CO-tolerant catalyst
462(2)
9.4.1.4 High-temperature operation
464(2)
9.4.1.5 Hydrogen from electrolysis of water
466(1)
9.4.2 Air Side Mitigation
466(1)
9.4.2.1 Filtration
466(2)
9.4.2.2 Potential cycling and flushing
468(1)
9.5 Summary
469(18)
10 In situ Characterization Methods of PEMFC Materials Degradation
487(24)
Viktor Hacker
Eva Wallnofer-Ogris
Harald Brandstatter
Markus Perchthaler
10.1 Introduction
487(1)
10.2 Hydrogen Diffusion: In situ Determination of Membrane Degradation
488(1)
10.3 Polarization Curves and Performance
489(1)
10.4 Open-Circuit Voltage
490(1)
10.5 Fluoride Emission Rate
491(2)
10.6 Cyclic Voltammetry
493(3)
10.7 Electrochemical Impedance Spectroscopy
496(2)
10.7.1 Equivalent Circuit Models
496(1)
10.7.2 Total Harmonic Distortion Analysis
497(1)
10.8 Determination of the Local Electrochemical Potential
498(2)
10.9 Exhaust Gas Analysis
500(3)
10.10 Current Density Distribution
503(8)
10.10.1 Humidification Aspects: Co-Flow Operation
504(1)
10.10.2 Humidification Aspects: Counter-Flow Operation
505(6)
11 Multiscale Molecular Modeling of Degradation Phenomena in Catalyst Layers of Polymer Electrolyte Fuel Cells
511(38)
Kourosh Malek
Tetsuya Mashio
11.1 Introduction
512(2)
11.2 Multiscale Molecular Modeling of CL
514(7)
11.2.1 Molecular Dynamics Simulations
515(2)
11.2.2 Atomistic MD Simulations of CL
517(2)
11.2.3 Meso-Scale Model of CL Microstructure
519(2)
11.3 Pt Degradation and Molecular Modeling of Pt Stability and Pt-C Interactions
521(12)
11.3.1 Pt Nanoparticle Migration and Formation of Larger Clusters
522(8)
11.3.2 Pt Dissolution
530(3)
11.4 Meso-Scale Modeling of Carbon Corrosion in CLs
533(5)
11.5 Concluding Remarks
538(11)
12 Toward a Bottom-Up Multiscale Modeling Framework for the Transient Analysis of PEM Fuel Cells Operation
549(40)
Alejandro A. Franco
12.1 Introduction
549(5)
12.2 Modeling of the Electrochemistry in PEMFCs
554(7)
12.3 Modeling of Transport and Thermal Stresses in PEMFCs
561(5)
12.4 Bottom-Up Multiscale Modeling of PEMFC
566(6)
12.5 CFD Modeling of PEMFC
572(2)
12.6 PEMFC Diagnostic Modeling
574(2)
12.7 Summary and Challenges
576(13)
Index 589
Alejandro A. Franco