Atnaujinkite slapukų nuostatas

El. knyga: Polytopes: Abstract, Convex and Computational

Edited by , Edited by , Edited by , Edited by
  • Formatas: PDF+DRM
  • Serija: NATO Science Series C 440
  • Išleidimo metai: 06-Dec-2012
  • Leidėjas: Springer
  • Kalba: eng
  • ISBN-13: 9789401109246
  • Formatas: PDF+DRM
  • Serija: NATO Science Series C 440
  • Išleidimo metai: 06-Dec-2012
  • Leidėjas: Springer
  • Kalba: eng
  • ISBN-13: 9789401109246

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

The aim of this volume is to reinforce the interaction between the three main branches (abstract, convex and computational) of the theory of polytopes. The articles include contributions from many of the leading experts in the field, and their topics of concern are expositions of recent results and in-depth analyses of the development (past and future) of the subject.
The subject matter of the book ranges from algorithms for assignment and transportation problems to the introduction of a geometric theory of polyhedra which need not be convex.
With polytopes as the main topic of interest, there are articles on realizations, classifications, Eulerian posets, polyhedral subdivisions, generalized stress, the Brunn--Minkowski theory, asymptotic approximations and the computation of volumes and mixed volumes.
For researchers in applied and computational convexity, convex geometry and discrete geometry at the graduate and postgraduate levels.

Daugiau informacijos

Springer Book Archives
Abstract.- Recent results on Coxeter groups.- The evolution of
Coxeter-Dynkin diagrams.- Polyhedra with hollow faces.- A hierarchical
classification of Euclidean polytopes with regularity properties,.- Modern
developments in regular polytopes.- Classification of locally toroidal
regular polytopes.- Convex.- Face numbers and subdivisions of convex
polytopes.- Approximation by convex polytopes.- Some aspects of the
combinatorial theory of convex polytopes.- On volumes of non-Euclidean
polytopes.- Manifolds in the skeletons of convex polytopes,tightness, and
generalized Heawood inequalities.- Generalized stress and motions.- Polytopes
and Brunn-Minkowski theory.- A survey of Eulerian posets.- Computational.- On
recent progress in computational synthetic geometry.- The ridge graph of the
metric polytope and some relatives.- On the complexity of some basic problems
in Computational Convexity: II. Volume and mixed volumes.- The diameter of
polytopes and related applications.- Problems.- Contributed problems.- Three
problems about 4-polytopes.