Foreword |
|
vii | |
Preface |
|
xv | |
|
|
|
1 An Invitation to Positive Matrices |
|
|
|
|
3 | (3) |
|
|
6 | (6) |
|
|
12 | (1) |
|
|
12 | (3) |
|
|
|
|
15 | (3) |
|
|
18 | (6) |
|
|
24 | (5) |
|
|
29 | (1) |
|
|
29 | (2) |
|
|
|
3.1 The Coordinate Sequences |
|
|
31 | (2) |
|
|
33 | (2) |
|
|
35 | (5) |
|
|
40 | (1) |
|
|
41 | (2) |
|
4 The Matrix Exponential Function |
|
|
|
|
43 | (3) |
|
|
46 | (2) |
|
|
48 | (1) |
|
|
49 | (4) |
|
|
53 | (1) |
|
|
53 | (2) |
|
|
|
|
55 | (4) |
|
|
59 | (4) |
|
|
63 | (4) |
|
|
67 | (1) |
|
|
68 | (1) |
|
6 Applications of Positive Matrices |
|
|
|
6.1 Motivating Examples Revisited |
|
|
69 | (5) |
|
|
74 | (2) |
|
6.3 Age-structured Population Models |
|
|
76 | (3) |
|
|
79 | (1) |
|
|
79 | (2) |
|
7 Positive Matrix Semigroups and Applications |
|
|
|
|
81 | (4) |
|
7.2 The Competitive Market Model |
|
|
85 | (1) |
|
|
85 | (3) |
|
7.4 Disease Transition Models |
|
|
88 | (1) |
|
7.5 Discrete Maximum Principles |
|
|
89 | (1) |
|
|
90 | (1) |
|
|
90 | (3) |
|
8 Positive Linear Systems |
|
|
|
8.1 Externally and Internally Positive Systems |
|
|
93 | (6) |
|
|
99 | (4) |
|
|
103 | (1) |
|
|
104 | (1) |
|
|
104 | (5) |
|
Part II Infinite Dimensions |
|
|
|
9 A Crash Course on Operator Semigroups |
|
|
|
9.1 Exponential Functions |
|
|
109 | (3) |
|
9.2 Motivation for Generalizations |
|
|
112 | (3) |
|
|
115 | (3) |
|
9.4 The Infinitesimal Generator |
|
|
118 | (6) |
|
9.5 Multiplication Semigroups |
|
|
124 | (3) |
|
|
127 | (4) |
|
9.7 Resolvent of a Generator |
|
|
131 | (4) |
|
|
135 | (2) |
|
|
137 | (1) |
|
|
138 | (3) |
|
10 Banach Lattices and Positive Operators |
|
|
|
10.1 Ordered Function Spaces |
|
|
141 | (4) |
|
|
145 | (2) |
|
|
147 | (4) |
|
10.4 Sublattices and Ideals |
|
|
151 | (3) |
|
10.5 Complexification of Real Banach Lattices |
|
|
154 | (1) |
|
|
155 | (3) |
|
10.7 Positive Exponential Functions |
|
|
158 | (4) |
|
|
162 | (1) |
|
|
162 | (3) |
|
|
|
11.1 The Hille--Yosida Generation Theorem |
|
|
165 | (3) |
|
11.2 Bounded Perturbations |
|
|
168 | (3) |
|
11.3 Positive Contraction Semigroups |
|
|
171 | (7) |
|
11.4 Positive Minimum Principle |
|
|
178 | (1) |
|
|
179 | (1) |
|
|
179 | (2) |
|
12 Spectral Theory for Positive Semigroups |
|
|
|
12.1 Asymptotic Stability of Semigroups |
|
|
181 | (4) |
|
12.2 The Spectral Bound for Positive Semigroups |
|
|
185 | (7) |
|
12.3 The Identity ω0(T) = s(A) for Positive Semigroups |
|
|
192 | (2) |
|
|
194 | (1) |
|
|
195 | (2) |
|
13 Unbounded Positive Perturbations |
|
|
|
13.1 Unbounded Dispersive Perturbations |
|
|
197 | (3) |
|
13.2 Miyadera Perturbations |
|
|
200 | (3) |
|
13.3 Positive Perturbations in L1 |
|
|
203 | (6) |
|
|
209 | (1) |
|
|
210 | (3) |
|
Part III Advanced Topics and Applications |
|
|
|
14 Advanced Spectral Theory and Asymptotics |
|
|
|
14.1 Spectral Decomposition |
|
|
213 | (6) |
|
|
219 | (3) |
|
14.3 Irreducible Semigroups |
|
|
222 | (8) |
|
|
230 | (2) |
|
|
232 | (1) |
|
|
233 | (2) |
|
15 Positivity and Delay Equations |
|
|
|
15.1 Abstract Delay Equations |
|
|
235 | (6) |
|
|
241 | (4) |
|
15.3 Stability of Delay Equations |
|
|
245 | (6) |
|
|
251 | (1) |
|
|
252 | (1) |
|
|
|
16.1 Ordinary Differential Equations and Semiflows |
|
|
253 | (4) |
|
|
257 | (6) |
|
16.3 Applications of Koopman Semigroups |
|
|
263 | (3) |
|
|
266 | (1) |
|
|
266 | (3) |
|
17 Linear Boltzmann Transport Equations with Scattering |
|
|
|
|
269 | (1) |
|
17.2 The One-dimensional Reactor Problem |
|
|
270 | (5) |
|
|
275 | (1) |
|
|
276 | (3) |
|
18 Transport Problems in Networks |
|
|
|
18.1 The Model and the Associated Abstract Cauchy Problem |
|
|
279 | (5) |
|
18.2 The Simple Case cj = 1 |
|
|
284 | (4) |
|
|
288 | (6) |
|
18.4 Vertex Control in Networks |
|
|
294 | (5) |
|
|
299 | (1) |
|
|
299 | (4) |
|
19 Population Equations with Diffusion |
|
|
|
19.1 The Mathematical Model |
|
|
303 | (2) |
|
19.2 Hille--Yosida Operators and Extrapolated Semigroups |
|
|
305 | (2) |
|
19.3 Spectral Properties of Perturbed Hille--Yosida Operators |
|
|
307 | (5) |
|
19.4 Evolution Equations with Boundary Perturbations |
|
|
312 | (6) |
|
19.5 Back to the Population Equation |
|
|
318 | (6) |
|
|
324 | (1) |
|
Appendix Background Material from Linear Algebra and Functional Analysis |
|
|
325 | (22) |
|
|
325 | (2) |
|
A.2 Reducing Subspaces and Projections |
|
|
327 | (2) |
|
A.3 Interpolation Polynomials |
|
|
329 | (1) |
|
|
330 | (2) |
|
A.5 The Strong Operator Topology |
|
|
332 | (1) |
|
A.6 Some Classical Theorems |
|
|
333 | (2) |
|
|
335 | (1) |
|
A.8 Dual Spaces and Adjoint Operators |
|
|
336 | (2) |
|
A.9 Spectrum, Essential Spectrum, and Compact Operators |
|
|
338 | (4) |
|
A.10 Bochner Integral, Laplace and Fourier Transforms |
|
|
342 | (2) |
|
A.11 Distributions and Sobolev Spaces |
|
|
344 | (3) |
Bibliography |
|
347 | (10) |
Index |
|
357 | |