Atnaujinkite slapukų nuostatas

El. knyga: Practical Guide to Construction of Hydropower Facilities

(Jaipur National University, Jaipur, INDIA)
  • Formatas: 456 pages
  • Išleidimo metai: 18-Mar-2019
  • Leidėjas: CRC Press Inc
  • Kalba: eng
  • ISBN-13: 9781351233262
  • Formatas: 456 pages
  • Išleidimo metai: 18-Mar-2019
  • Leidėjas: CRC Press Inc
  • Kalba: eng
  • ISBN-13: 9781351233262

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

This book deals with the narratives of water to watt, which includes elementary conceptual design, modern planning, scheduling and monitoring systems, and extensive pre- and post-investigations pertaining to hydropower facilities. It also includes explorations to ensure aspects of dam safety evaluation, effective contract management, specialized construction management techniques, and preferred material and equipment handling systems. Special emphasis is placed upon health, safety, environmental, and risk management concepts. The book discusses a standard QA/QC system to measure and assure quality and an environmental impact assessment to reach the set target in the stipulated timeline within the approved budget.

Key Features:











Offers comprehensive coverage of hydro-structures and practical coverage from an industry perspective





Helps readers understand complexity involved in large-scale interdisciplinary projects





Provides good insights on building procedures, precautions, and project management





Includes project planning, construction management and hydropower technology, QA/QC, HSE, and statutory requirements





Illustrates how to integrate good constructability/buildability into good design for the best monetary value
Preface xxv
Author xxvii
1 Concepts of a Hydropower Project
1(12)
1.1 Introduction to Objectives, Scope, and Outcomes
1(3)
1.2 Outcomes
4(1)
1.3 Theme and Philosophy
4(1)
1.4 Concept of Hydropower Project
4(3)
1.4.1 Role of Hydropower in Energy Mix
5(1)
1.4.2 Energy Storage and Its Function
6(1)
1.5 Global Status of Hydropower
7(1)
1.5.1 Hydropower Installed Capacity by Region
7(1)
1.5.2 Top 10 Hydropower Producing Countries, 2016
7(1)
1.5.3 Ten Largest Hydropower Project in the World
7(1)
1.6 Definition of Hydropower
8(3)
1.6.1 Merits and Demerits
9(1)
1.6.1.1 Merits
9(1)
1.6.1.2 Demerits
10(1)
1.6.2 Type of Hydropower Projects
10(1)
1.6.2.1 Large Hydro Project
10(1)
1.6.2.2 Medium Hydro Project
10(1)
1.6.2.3 Small Hydro Project
11(1)
1.6.2.4 Mini Hydro Project
11(1)
1.6.2.5 Micro Hydro Project
11(1)
1.6.2.6 Pico Hydro Project
11(1)
Bibliography
11(2)
2 Planning, Project Cost Estimation, and the Future of Small Hydropower (SHP): Large Hydro and Its Various Schemes and Components
13(52)
2.1 Global Definition and Various Rated Capacity of SHP
13(1)
2.2 Type of Facilities and Its Applicability
13(1)
2.2.1 Classification of Small Hydro by Head
13(1)
2.3 How Small Scale Hydro Is Utilized World Wide
14(2)
2.4 Planning of Small Hydropower (SHP)
16(8)
2.4.1 Feasibility/Detailed Project Report
17(1)
2.4.2 Scheme of SHP
18(1)
2.4.2.1 Selection of Type of Project
18(1)
2.4.2.2 Desilting Prevention
18(1)
2.4.2.3 Selection of Type of Structure
18(1)
2.4.2.4 Economic Layout
19(1)
2.4.3 Type of Scheme
19(1)
2.4.4 ROR Scheme of SHP and Its Components
19(2)
2.4.5 Canal Falls Scheme
21(1)
2.4.5.1 Layout of Canal Falls
21(1)
2.4.5.2 Component of Canal Falls Scheme
22(1)
2.4.6 Dam/Weir Based Scheme
22(1)
2.4.6.1 Component of Dam Toe Scheme
23(1)
2.4.6.2 Layout of Dam Toe Scheme
23(1)
2.4.7 Pumped Storage Scheme
23(1)
2.5 Benefits of Small Hydropower (SHP)
24(1)
2.6 Project Cost Estimation and the Future of SHP
24(23)
2.6.1 Break Up of Activities of SHP
25(1)
2.6.1.1 Enabling Works
25(1)
2.6.1.2 Civil Works
25(1)
2.6.1.3 Electro-Mechanical Work
26(1)
2.6.2 Preparation of Estimate
26(1)
2.6.2.1 Preliminary Estimate
26(1)
2.6.2.2 Detailed Estimate
27(1)
2.6.2.3 Formula Based Estimate
27(1)
2.6.3 Detailed Estimate for Evaluating Budget of the Work
27(1)
2.6.3.1 Direct Costs
27(1)
2.6.3.2 Indirect Costs
27(1)
2.6.3.3 Other Costs
27(1)
2.6.3.4 Preliminary Cost
28(1)
2.6.3.5 Land Cost
28(1)
2.6.3.6 Infrastructure Cost
28(1)
2.6.3.7 Cost of Civil Works
29(1)
2.6.3.8 Electro Mechanical Work
30(1)
2.6.3.9 Transmission Line
30(1)
2.6.3.10 Plantation Cost
31(1)
2.6.3.11 Maintenance Cost
31(1)
2.6.3.12 Plants and Erection Equipment
31(1)
2.6.3.13 Communication
31(1)
2.6.3.14 Miscellaneous
31(1)
2.6.3.15 Receipts and Recoveries
32(1)
2.6.3.16 Indirect Cost
32(1)
2.6.3.17 Other Cost
32(1)
2.6.4 Format for Detailed Estimate
33(1)
2.6.5 Type of Estimates
33(1)
2.6.5.1 Recasting of Estimate
33(1)
2.6.5.2 Supplementary Estimate
33(1)
2.6.5.3 Revised Estimate
33(1)
2.6.6 Economic and Financial Cost Analysis
34(1)
2.6.6.1 Requisite Tools for Financial Analysis
34(1)
2.6.6.2 Capital Cost
35(1)
2.6.6.3 Funding and Its Means
35(1)
2.6.7 Phase-Wise Distribution of Budget and Expenditures
36(1)
2.6.7.1 Capacity Factor
36(1)
2.6.7.2 Interest During Construction (IDC)
36(1)
2.6.7.3 Fiscal Incentives for Small Hydropower
37(1)
2.6.7.4 Debt to Equity Ratio
37(1)
2.6.7.5 Working Capital
37(1)
2.6.7.6 Discount Factors
38(1)
2.6.7.7 Internal Rate of Return
39(1)
2.6.7.8 Installation Cost
39(1)
2.6.7.9 Unit Generation Cost
39(1)
2.6.7.10 Energy Available for Sale
39(1)
2.6.7.11 Sale Price of Electricity
40(1)
2.6.7.12 Payback Method
40(1)
2.6.7.13 Benefit Cost Ratio
40(1)
2.6.7.14 Debt Service Coverage Ratio
40(1)
2.6.7.15 Financial Analysis
41(1)
2.6.8 Due Diligence
41(1)
2.6.8.1 Due Diligence of Financial Feasibility of Hydropower Project
42(5)
2.7 Major Hydropower Project
47(16)
2.7.1 Run-of-River Project
47(1)
2.7.1.1 Advantage and Disadvantage of This Project
47(1)
2.7.1.2 Ten ROR of the World
48(1)
2.7.2 Storage Project
49(1)
2.7.2.1 Advantages and Disadvantages
49(1)
2.7.3 Pumped Storage
50(1)
2.7.3.1 Advantages
51(1)
2.7.3.2 World's 10 Pumped Storage Project
51(1)
2.7.4 Multipurpose Project
51(3)
2.7.5 Component of Hydel Project
54(1)
2.7.6 Difference between Dam and Weir
55(1)
2.7.7 Classification of Dam, Other Components and Its Function
56(2)
2.7.8 Profile and Various Sections of Dam
58(1)
2.7.8.1 Non-Overflow Section of Dam
58(1)
2.7.8.2 Overflow Section of Dam
58(1)
2.7.9 Energy Dissipation, Hydraulic Jump, Stilling Basin
58(3)
2.7.9.1 Hydraulic Jump
61(1)
2.7.9.2 Energy Dissipation
62(1)
Bibliography
63(2)
3 Concept of Forces Acting on Gravity Dam and Its Stability
65(18)
3.1 Terminology and Some Definitions Related to Gravity Dam
65(3)
3.2 Concept of Forces Acting on Gravity Dam
68(1)
3.3 Requirement of Stability
69(1)
3.4 Forces Acting on Dam
69(2)
3.5 Category of Forces to Be Resisted by Dam
71(1)
3.6 Assumptions for Consideration of Stability
71(1)
3.7 Load Combination
71(6)
3.7.1 Dead Load
72(1)
3.7.2 Reservoir and Tail Water Load
73(1)
3.7.3 Uplift Pressure
74(2)
3.7.4 Earthquake Force
76(1)
3.7.5 Ice Pressure
77(1)
3.7.6 Wave Pressure
77(1)
3.7.7 Thermal Load
77(1)
3.8 Reaction of Foundation
77(1)
3.9 Resistance against Over Turning
78(1)
3.10 Sliding Resistance
78(1)
3.11 Factor of Safety
78(1)
3.12 Discussion on Earthquake Engineering of Dam
78(4)
3.12.1 Integrity Check of Concrete Dam
81(1)
Bibliography
82(1)
4 Contract and Administration Management
83(42)
4.1 Introduction
83(1)
4.2 Component of Contract Management
83(2)
4.2.1 Significance of Contract Management
84(1)
4.2.2 Challenges in Contract Management
84(1)
4.2.3 Contract Administration
84(1)
4.2.4 Service Delivery
85(1)
4.2.5 Relationship Domain
85(1)
4.2.6 Financial Analysis
85(1)
4.3 Function of Contract Management
85(1)
4.4 Type of Contract
86(1)
4.4.1 Lump Sum Contract
86(1)
4.4.2 Drawing and Design by Department
87(1)
4.4.3 Drawing and Design by Vendor
87(1)
4.5 Item Rate Contract
87(1)
4.6 Cost Plus Contract
88(1)
4.7 Turnkey Contract
88(1)
4.8 Estimation and Tendering Process of Concrete Gravity Dam
89(2)
4.8.1 Preparation of Cost Estimate
90(1)
4.8.2 Bill of Quantities
90(1)
4.8.3 Schedule of Rates (SOR)
90(1)
4.9 Type of Estimates
91(22)
4.9.1 Preparation of Report of Detailed Estimate
91(1)
4.9.2 Technical Sanction of Estimate and Recasting of Estimate
91(1)
4.9.3 Preparation of Notice Inviting Tender (NIT)
91(1)
4.9.4 Preparation of Tender Document
92(1)
4.9.5 Publicity of Tender
92(1)
4.9.6 Tender for Sale
92(1)
4.9.7 Receipt of Tender
92(1)
4.9.8 Opening of Tender and Procedure of 2 Bid and 3 Bid System Tender
92(1)
4.9.9 Comparative Statement
93(1)
4.9.10 Acceptance of the Contract
93(1)
4.9.10.1 Issuance of Letter of Intent
93(1)
4.9.10.2 Issuance of Work Order
94(1)
4.9.10.3 Glimpses on General Condition of Contract (GCC)
94(3)
4.9.11 E-Tendering
97(1)
4.9.11.1 Different Phases of E-Tendering
97(2)
4.9.11.2 Work Breakdown Structure in Hierarchical Structure
99(1)
4.9.11.3 How to Prepare WBS
99(1)
4.9.11.4 Type of WBS
100(1)
4.9.11.5 Work Breakdown Structure Diagram and Outline with Work Packages
100(1)
4.9.11.6 WBS Dictionary
101(1)
4.9.12 Network Planning
101(1)
4.9.12.1 Concept of Planning and Scheduling of a Project
102(3)
4.9.12.2 Components of Network
105(1)
4.9.12.3 Construction of Network
105(3)
4.9.12.4 Explanation of Dummy Activity
108(1)
4.9.12.5 Estimation of Time
109(1)
4.9.12.6 Probable Completion of the Project
110(1)
4.9.12.7 Time-Cost Trade Off
110(1)
4.9.13 Preparation of S-Curve
111(1)
4.9.13.1 Monitoring Mechanism
112(1)
4.10 Start-Up, Testing, Pre-Commissioning, and Commissioning
113(6)
4.10.1 Planning for Commissioning
113(4)
4.10.2 Engineering Diligence
117(1)
4.10.3 Punch List Categorization
117(1)
4.10.4 Formation of Commissioning Group
118(1)
4.10.5 Documents Required
119(1)
4.10.6 Planning for Start-Up and Commissioning
119(1)
4.11 Start-Up
119(4)
4.11.1 Pre-Commissioning
119(1)
4.11.2 Commissioning
119(1)
4.11.3 Responsibility of Each Group
120(1)
4.11.4 Start-Up Test
120(1)
4.11.4.1 Pre-Commissioning Test
121(1)
4.11.4.2 Commissioning Test
121(2)
4.12 Liquidation of Punch List
123(1)
4.13 Performance Test
123(1)
4.14 Project Close Out Report
123(1)
Bibliography
124(1)
5 Site Mobilization and Kick-Off
125(26)
5.1 Introduction
125(1)
5.2 Infrastructure Development by Project Authority
126(1)
5.2.1 Construction of Road Network, Bridges, Culverts, Cause Ways, and Others, in Project Area
126(1)
5.2.2 Construction of Haul Roads
126(1)
5.2.3 Service Road
127(1)
5.2.4 Project Townships and Utility
127(1)
5.2.5 Other Utility Accommodation and Facility Buildings
127(1)
5.2.6 Water Supply
127(1)
5.2.7 Construction Power
127(1)
5.3 Role of Construction Manager
127(1)
5.3.1 Phases of Construction Management
127(1)
5.3.2 Assumptions of Construction Management
128(1)
5.3.3 Constraints of Construction Management
128(1)
5.4 Planning for Mobilization and Kick-Off Meeting
128(3)
5.4.1 Kick Off Meeting
128(1)
5.4.2 Convener of the Meeting
128(1)
5.4.3 Documents to Be Furnished before Site Mobilization
129(1)
5.4.4 Documents Required by Contractor before Site Mobilization
129(1)
5.4.4.1 By Contract Department
129(1)
5.4.4.2 By Engineering Department
130(1)
5.4.4.3 By QA/QC Department
130(1)
5.4.4.4 By HSE Department
130(1)
5.4.4.5 By Planning Department
130(1)
5.4.4.6 By HR Department
130(1)
5.4.4.7 By Account and Finance
131(1)
5.4.4.8 By Construction Department
131(1)
5.5 Site Mobilization
131(3)
5.5.1 Site Infrastructures Development
132(1)
5.5.2 Mobilization of Machinery and Construction Equipment
133(1)
5.5.3 Manpower Mobilization
134(1)
5.6 Initial Site Activities
134(7)
5.6.1 Surveying of Dam Site
135(1)
5.6.2 Stone Quarry
135(1)
5.6.2.1 Selection of Stone Quarry
136(1)
5.6.2.2 Operational Requirement
136(1)
5.6.2.3 Technical Requirement
136(1)
5.6.2.4 Alternative Proposal
137(1)
5.6.3 Batching Plant
137(1)
5.6.3.1 Location of Batching Plant
137(1)
5.6.3.2 Selection of Batching Plant
138(1)
5.6.3.3 Installation System of Batching Plant
138(1)
5.6.3.4 Calibration
139(1)
5.6.3.5 Routine Maintenance Check
140(1)
5.7 Blasting Operations in Stone Quarry
141(10)
5.7.1 Blasting Activity
141(1)
5.7.2 Explosives
141(1)
5.7.2.1 How It Works
142(1)
5.7.2.2 Efficiency of Blasting
142(1)
5.7.2.3 Creation of Face of Rock
142(1)
5.7.2.4 Pattern and Spacing of Blast Holes
142(1)
5.7.2.5 Diameter of Blast Hole
143(2)
5.7.2.6 Bench Height
145(1)
5.7.2.7 Depth of Hole
145(1)
5.7.2.8 Burden
145(1)
5.7.3 Type of Explosive
145(1)
5.7.4 Design of Explosive Charge
146(1)
5.7.5 Equipment Required for Drilling Blast Holes
146(2)
5.7.6 Controlled Blasting
148(1)
5.7.6.1 Method of Blasting in Dam Foundation
148(1)
5.7.7 Storage of Explosive
148(1)
5.7.8 Transportation of Explosive
149(1)
5.7.9 Precaution
149(1)
5.7.10 Blast Log
150(1)
6 River Diversion
151(14)
6.1 Introduction
151(1)
6.2 Diversion Requirement
151(1)
6.3 Method of Diversion
152(1)
6.4 Various River Diversion
152(11)
6.4.1 River Diversion: Open Channel on Edge of the River
152(1)
6.4.2 River Diversion: Diversion Channel and Coffer Dam
153(1)
6.4.2.1 Construction of Upstream Coffer Dam
154(1)
6.4.2.2 Construction of Downstream Coffer Dam
154(1)
6.4.2.3 Construction of Diversion Channel
155(1)
6.4.3 River Diversion: Diversion Tunnel and Coffer Dams
156(1)
6.4.3.1 Construction of Diversion Tunnel
156(1)
6.4.3.2 Construction Methodology
157(1)
6.4.3.3 Planning and Scheduling of Material, Equipment, Machinery, and Others
158(1)
6.4.3.4 Construction of Upstream Coffer Dam
158(3)
6.4.3.5 Construction of Downstream Coffer Dam
161(1)
6.4.4 River Diversion: Diversion Tunnel/Channel and Overtopped Coffer Dam
161(1)
6.4.5 Discussion
162(1)
Bibliography
163(2)
7 Reinforcement Cutting and Bending Yard
165(18)
7.1 Purpose
165(1)
7.2 Type of Steel Used in Civil Engineering Work
165(4)
7.2.1 Chemical Properties
166(1)
7.2.2 Mechanical Properties
166(1)
7.2.3 Nominal Size of Rebar
166(1)
7.2.4 Inspection and Various Checking on Rebar
167(2)
7.3 Planning and Setting Up Bar Bending Yard
169(5)
7.3.1 Requirement
169(1)
7.3.2 Preparation of Bar Bending Schedule
169(1)
7.3.3 Format of Bar Bending Schedule
169(1)
7.3.4 Guidelines for Preparation of BBS
170(1)
7.3.4.1 Calculation
171(1)
7.3.4.2 Recommended End Hook for All Grades
171(3)
7.4 Splicing and Its Types
174(4)
7.4.1 Conventional Lapping
174(1)
7.4.2 Mechanical Splicing/Bar Coupler
175(1)
7.4.2.1 Standard Tapered Threaded Coupler
175(1)
7.4.2.2 Parallel Threaded Coupler
175(1)
7.4.3 Installation of Coupler
176(1)
7.4.4 Test for Coupler
176(1)
7.4.5 Splicing by Welding
176(1)
7.4.5.1 Electrodes
176(1)
7.4.6 Welding Method
176(1)
7.4.6.1 Butt Welding
176(1)
7.4.6.2 Sequence of Welding
177(1)
7.4.6.3 Lap Weld
178(1)
7.5 Setting up Bar Bending Yard
178(4)
7.5.1 Equipment/Machines Required
179(1)
7.5.2 Guide Lines for Selection of Machines
179(1)
7.5.3 Work as per BBS
180(1)
7.5.4 Advantage of BBS
181(1)
7.5.5 Safety Norms to Be Adopted at Bar Bending Yard
181(1)
7.5.6 Safety Hazard Identification in Bar Bending Yard
181(1)
7.5.7 Advantage of BBS
182(1)
Bibliography
182(1)
8 Investigation and Exploration of Dam and Reservoir Site
183(14)
8.1 Fundamentals
183(1)
8.2 Dam Site Investigation
184(1)
8.3 Geological Exploration
185(1)
8.4 Stages of Geological Exploration
186(8)
8.4.1 Reconnaissance or Pre Feasibility Stage
187(1)
8.4.2 Preliminary Investigation or Feasibility Stage
187(1)
8.4.2.1 Method of Preliminary Investigation
187(2)
8.4.2.2 Sub Surface Mapping
189(1)
8.4.2.3 Feasibility Report
190(1)
8.4.3 Detailed Investigation or DPR Stage
190(1)
8.4.3.1 Detailed Sub Surface Exploration
190(2)
8.4.3.2 Geotechnical Property of Foundation Material
192(1)
8.4.3.3 Detailed Project Report
192(1)
8.4.4 Construction Stage
193(1)
8.4.4.1 Exploration by Pit
193(1)
8.4.4.2 Safety Precaution
193(1)
8.4.4.3 Collection of Undisturbed Samples
194(1)
8.4.4.4 Exploration by Trench
194(1)
8.4.4.5 Exploration by Core Drilling
194(1)
8.4.4.6 Geologic Interpretation of Geological Mapping
194(1)
8.5 Permeability Assessment of Foundation
194(1)
8.6 Definition of Grout and Determination Grout Holes
195(1)
Bibliography
196(1)
9 Construction Methodology of Dam Foundation and Technology of Its Foundation Treatment
197(32)
9.1 Foundation
197(1)
9.2 Layout of Foundation
197(1)
9.3 Identification and Removal of Over Burden
198(1)
9.4 Geological Mapping
199(1)
9.5 Foundation Treatment
200(4)
9.5.1 Drilling of Holes in Grid Pattern per Geologist
200(2)
9.5.2 Safety Compliance during Drilling Operation
202(1)
9.5.3 Establish Connectivity between the Holes by Flushing for the Removal of Clay from the Clay Seam Existing within the Rock
202(1)
9.5.4 Washing Procedure
202(2)
9.6 Consolidation Grouting in Foundation Area
204(5)
9.6.1 Grouting Equipment
207(1)
9.6.2 Role of Ingredients of Grout Mix
208(1)
9.7 Discussion on Procedure of Grouting, Grouting Material, and Equipment
209(4)
9.7.1 Factors Affecting the Flow of Grout
209(2)
9.7.2 Grain Size Distribution of Cement
211(1)
9.7.3 Percolation Test
212(1)
9.7.4 Equipment Required
213(1)
9.8 Curtain Grouting
213(3)
9.8.1 Single Line Curtain
214(1)
9.8.2 Multiple Line Curtain
214(1)
9.8.3 Depth of Hole
215(1)
9.8.4 Drainage System
216(1)
9.9 Dental Treatment of Fault Zone, Shear Zone
216(1)
9.9.1 Protection against Piping
217(1)
9.10 Case Study
217(6)
9.10.1 Case Study Number 1
218(2)
9.10.2 Case Study Number 2
220(1)
9.10.2.1 Effect of This Particular Geologic Condition on Construction
221(2)
9.11 FAQ on Grouting Grout Pressure, Multistage Grouting, Permeability Test, and Others
223(2)
9.12 Technical Discussion on Karst or Sinkholes
225(1)
9.12.1 How Is It Formed
225(1)
9.13 Sink Hole/Karst Topography Is a Matter of Concern for a Hydel Project
226(3)
9.13.1 Caves and Sinkholes and Their Characteristics
227(1)
9.13.2 Underground Inhabitants
227(2)
10 Concrete and Its Application in Concrete Gravity Dam
229(38)
10.1 Introduction
229(1)
10.2 Group of Concrete
229(1)
10.3 Classification of Concrete with Type of Cement Used
230(1)
10.4 Classification of Concrete as per Weight
230(1)
10.5 Grades of Concrete
230(1)
10.6 Some Special Concrete
230(1)
10.7 Classification of Concrete Mix
231(1)
10.8 Parameters That Control the Character of Concrete
232(6)
10.8.1 Water-Cement Ratio
233(1)
10.8.2 Water Content
233(1)
10.8.3 Cement Content
234(1)
10.8.4 Aggregates
235(1)
10.8.4.1 Classification of Aggregates
235(1)
10.8.4.2 Grading and Size of Aggregates
236(1)
10.8.4.3 Mechanical Properties of Aggregates
237(1)
10.8.4.4 Physical Property
238(1)
10.9 Mix Design and Its Requirement
238(14)
10.9.1 Advantages of Mix Design
239(1)
10.9.2 Information Required for Mix Design
239(2)
10.9.3 Flow Diagram of Concrete Mix
241(1)
10.9.4 Procedure of Design Mix
242(4)
10.9.5 Design Procedure of Mass Concrete per ACI Method
246(6)
10.10 Example of Mix Design of Mass Concrete
252(3)
10.11 Batching and Placement of Concrete
255(10)
10.11.1 Definition of Batching and Mixing
255(1)
10.11.2 Concrete Production Flow Chart
256(1)
10.11.3 Batching Plant
257(1)
10.11.4 Component of Batching Plant and Its Function
257(1)
10.11.5 Placement, Compaction, and Curing of Dam Concrete
258(2)
10.11.5.1 Methodology of Placement of Dam Concrete
260(3)
10.11.5.2 Compaction of Dam Concrete
263(2)
10.11.5.3 Curing of Dam Concrete
265(1)
Bibliography
265(2)
11 Design Requirement for Temperature Control in Mass Concrete
267(10)
11.1 Concept of Mass Concrete
267(1)
11.2 Significance of Thermal Stresses in Mass Concrete
267(1)
11.3 Concept of Thermal Cracking
268(1)
11.4 Parameters Initiates in Rise of Temperature
269(1)
11.4.1 Configuration of Dam Section
269(1)
11.4.2 Cement Composition
269(1)
11.4.3 Fineness of Cement
269(1)
11.4.4 Content of Cement
270(1)
11.4.5 Aggregate Content
270(1)
11.5 Computation of Temperature of Concrete
270(5)
11.5.1 Background Information
271(2)
11.5.2 The Portland Association Method (PCA)
273(1)
11.5.2.1 Schmidt Method
273(1)
11.5.2.2 Concrete Work Software Package
274(1)
11.5.3 Experimental Procedure
274(1)
11.5.4 Practical Measure
274(1)
11.6 Methodology of Controlling Temperature in Concrete
275(1)
Bibliography
276(1)
12 Joints in Concrete Structures
277(26)
12.1 Introduction
277(1)
12.2 Type of Joints
277(4)
12.2.1 Construction Joint
277(1)
12.2.2 Type of Construction Joint
278(1)
12.2.3 Location of Construction Joint in Beam and Slab
279(1)
12.2.4 Sequence of Pouring
279(1)
12.2.5 Preparation and Construction of Joint
279(1)
12.2.6 Construction Joint on Floor Slab on Grade
280(1)
12.2.7 Construction Method
280(1)
12.3 Construction Joint in Dam Construction
281(1)
12.3.1 Preparation of Joints
281(1)
12.4 Construction Joint in Tunnel Construction
281(1)
12.4.1 Longitudinal Joint
281(1)
12.4.2 Transverse Joints
282(1)
12.5 Construction Joint in Bridge
282(1)
12.6 Contraction Joints in Concrete Structures
282(5)
12.6.1 Contraction Joint in Building
283(1)
12.6.2 Contraction Joint in Slab on Grade
283(1)
12.6.3 Contraction Joints in Dams
283(3)
12.6.4 Contraction Joint in Water Retaining Structure
286(1)
12.7 Expansion Joints
287(2)
12.7.1 Expansion Joint in Building
287(1)
12.7.2 Expansion Joints in Bridges
287(2)
12.8 Cold Joints in Concrete
289(2)
12.8.1 Causes of Cold Joints
289(1)
12.8.2 Treatment of Cold Joints
289(1)
12.8.3 Effect of Cold Joints in Concrete
290(1)
12.9 Sealant Material
291(3)
12.9.1 Type of Sealant
291(1)
12.9.2 Selection of Sealant Material
292(1)
12.9.3 Various Type of Sealants
292(2)
12.10 Repair of Cracks and Grouting Procedures
294(6)
12.10.1 Causes of Cracks
294(1)
12.10.2 Cracks in Concrete Gravity Dams
295(1)
12.10.2.1 Plastic Shrinkage Cracks
295(1)
12.10.2.2 Drying Shrinkage Cracks
295(1)
12.10.2.3 Crazing
296(1)
12.10.2.4 Thermal Cracks
296(1)
12.10.3 Remedial Measures
297(1)
12.10.4 Crack due to Reactive Ingredients
297(1)
12.10.4.1 Alkali-Silica Reaction
297(1)
12.10.4.2 Precautions
297(1)
12.10.5 Cracks and Deterioration of Concrete due to Corrosion
297(1)
12.10.6 Precautionary and Remedial Measures
298(1)
12.10.7 Grouting of Concrete Structures and Repair
298(1)
12.10.8 Classification of Grouting
298(1)
12.10.9 Repairs of Cracks by Epoxy Grouting
298(2)
12.10.10 Repairs of Defective Concrete by Epoxy Concrete
300(1)
12.11 Case Study
300(2)
12.11.1 Repair of Bauxite Secondary Crusher Foundation
300(2)
Bibliography
302(1)
13 Quality Assurance and Quality Control (QA/QC)
303(12)
13.1 What Is Quality?
303(1)
13.2 Quality Assurance
303(1)
13.3 Quality Control
303(1)
13.4 Quality Policy
304(1)
13.5 Quality Manual
304(1)
13.6 Job Procedure
304(6)
13.7 Indicative Inspection and Test Plan
310(2)
13.7.1 ITP for Consolidation Grouting in Foundation Area of Gravity Dam
310(2)
13.7.2 Pour Card
312(1)
13.8 Records Are to Be Maintained at Site
312(3)
14 Health, Safety, and Environment
315(14)
14.1 Introduction
315(1)
14.2 Purpose
315(1)
14.3 Safety Policy
316(1)
14.4 Safety Oath
316(1)
14.5 Action Plan
317(4)
14.5.1 HSE Meeting
317(1)
14.5.2 General Safety Meeting
317(1)
14.5.3 Agenda of the Meeting
318(1)
14.5.4 Monthly Safety Review Meetings
318(1)
14.5.5 Weekly Safety Meeting at Site Office
318(1)
14.5.6 Tool Box Talk
318(1)
14.5.7 Induction Training Program
319(1)
14.5.8 Displaying Safety Slogan in Key Locations
319(1)
14.5.9 Safety Bulletins
320(1)
14.5.10 Safety Workshops
320(1)
14.5.11 Safety Slogan and Essay Competitions
320(1)
14.5.12 Competence and Awareness Training
320(1)
14.6 Risk and Hazard Assessment
321(1)
14.6.1 Purpose of Risk Assessment
321(1)
14.6.2 Procedure of Hazard Identification/Risk Assessment
321(1)
14.6.2.1 Identification of Hazard
321(1)
14.6.2.2 Assessment of Risk
321(1)
14.7 Controlling Measures
322(1)
14.7.1 Details of PPE
322(1)
14.8 Hazard Identification and Risk Assessment of Dam Work
323(6)
15 Fabrication and Erection of Steel Structure and Penstock
329(16)
15.1 Fabrication
329(1)
15.2 Material
329(3)
15.2.1 Section
330(1)
15.2.2 Physical Property
330(1)
15.2.3 Classification
330(1)
15.2.4 Chemical, Mechanical, and Physical Property
331(1)
15.2.5 Designation
331(1)
15.3 Plans and Drawings
332(1)
15.3.1 Plans
332(1)
15.3.2 Shop Drawings/Fabrication Drawings/Cut Sheet
332(1)
15.3.3 Tolerance
333(1)
15.4 Fabrication Procedure
333(2)
15.4.1 Preparation
333(1)
15.4.2 Surface Cleaning
334(1)
15.4.3 Straightening
334(1)
15.4.4 Cutting
334(1)
15.4.5 Punching
335(1)
15.4.6 Fit Up and Clearance of Fit-Up
335(1)
15.5 Welding Procedure
335(3)
15.5.1 Welding Procedure Specification (WPS)
336(1)
15.5.2 Welding Procedure Qualification (PQR)
336(1)
15.5.3 Welding Qualification Test Procedure (WQPT)
336(1)
15.5.4 Welder Qualification Test
337(1)
15.6 Shop Fabrication
338(1)
15.6.1 Setting Out
338(1)
15.6.2 Surface Cleaning and Painting
338(1)
15.6.3 Erection
339(1)
15.7 Glimpse on Penstock Fabrication
339(5)
15.7.1 Magnitude of Loss
340(1)
15.7.2 Water Hammer and Thickness of Penstock
341(1)
15.7.3 Pipe Shell
341(1)
15.7.3.1 Support
341(1)
15.7.3.2 Joints
341(1)
15.7.3.3 Material
341(1)
15.7.3.4 Penstock Accessories
342(1)
15.7.3.5 Equipments and Machinery Required
342(1)
15.7.3.6 Fabrication
342(1)
15.7.3.7 Straightening and Levelling the Plates
342(1)
15.7.3.8 Cutting the Plates to Required Dimensions
342(1)
15.7.3.9 Preparation of Edge
343(1)
15.7.3.10 Rolling and Bending
343(1)
15.7.3.11 Welding Procedure
343(1)
15.7.3.12 Inspection of Welding Job
343(1)
15.7.3.13 Hydro Test
344(1)
15.7.3.14 Quality Assurance Plan
344(1)
Bibliography
344(1)
6 Environmental Assessment of Hydropower Projects
345(26)
16.1 Introduction
345(1)
16.2 Environmental Impact Assessment (EIA)
346(3)
16.2.1 Environmental Impact Assessment and Strategic Environmental Assessment
346(1)
16.2.2 Aims and Objectives of EIA
347(1)
16.2.3 Scope of EIA
347(1)
16.2.4 General and Specific Principles of EIA Application
347(1)
16.2.5 Some Key Factors of EIA Systems
348(1)
16.3 EIA Process
349(1)
16.4 Roles in EIA Process
350(3)
16.4.1 Project Proponent
351(1)
16.4.2 Project Management Consultant
351(1)
16.4.3 Environmental Consultant
351(1)
16.4.4 Environmental Scientist
351(2)
16.5 Effectiveness of EIA
353(1)
16.6 Benefits of ETA
353(1)
16.7 Cost of ETA
353(1)
16.8 Environmental Impacts due to Hydropower Project Construction
353(2)
16.9 Terms of Reference of Hydropower Projects
355(3)
16.10 Anticipated Impact, Mitigation Measures and Environmental Management Plan
358(5)
16.10.1 Various Environmental Management Plan
358(1)
16.10.1.1 Catchment Area Treatment (CAT) Plan
358(1)
16.10.1.2 Management of Air and Noise Levels
359(1)
16.10.1.3 Water Management
359(1)
16.10.1.4 Public Health Management Plan
359(1)
16.10.1.5 Waste Management Plan
360(1)
16.10.1.6 Muck Disposal Plan
360(1)
16.10.1.7 Fuel Wood Energy Management
360(1)
16.10.1.8 Disaster Management Plan
361(1)
16.10.1.9 Green Belt Development
361(1)
16.10.1.10 Biodiversity Management Plan
361(1)
16.10.1.11 Rehabilitation and Resettlement Plan
362(1)
16.10.1.12 Fishery Development Plan
363(1)
16.11 Application Prior to Environmental Clearance
363(5)
16.11.1 Procedure for Environmental Clearance
363(1)
16.11.2 Indicative Application Form (IAF NO 16.1)
364(4)
16.12 Case Study: Tehri Hydropower Complex in India: Problems Faced and Lessons Learned
368(1)
Bibliography
369(2)
17 Estimation and Cost Analysis of Hydropower Project
371(12)
17.1 Introduction
371(1)
17.2 Process of Capital Cost Estimate of Hydro Project
371(5)
17.2.1 Initial Capital Cost (ICC)
372(1)
17.2.2 Cost Break Down Structure
372(1)
17.2.3 CAPEX Components of Project
372(2)
17.2.4 Methods of Estimate
374(1)
17.2.4.1 Method Number 1
374(1)
17.2.4.2 Method Number 2
374(2)
17.2.4.3 Example of Rate Analysis for Excavation of Earthwork in All Kind of Soil by Hydraulic Excavator with Necessary Manpower Required for the Work
376(1)
17.3 Break Down Cost Percentage
376(2)
17.4 Levelized Cost of Electricity (LCOE)
378(1)
17.5 Determination of Tariff of Hydropower Project
379(3)
Bibliography
382(1)
18 Hydroelectric Power Houses
383(32)
18.1 Hydroelectric Power House
383(1)
18.2 Classification of Power House
384(1)
18.3 Function of Power House
384(1)
18.4 What Does a Power House Need to Accomplish These Activities?
385(1)
18.5 Layout of Power House and Its Dimensions
385(1)
18.5.1 Turbine and Generator Area
385(1)
18.5.2 Erection Bay
386(1)
18.5.3 Service Area
386(1)
18.6 Hydraulic Turbine, Heads, and Its Types
386(8)
18.6.1 Reaction Type of Turbine
387(1)
18.6.1.1 Francis Turbines
388(2)
18.6.1.2 Kaplan Turbine
390(1)
18.6.2 Impulse Type of Turbine
391(1)
18.6.2.1 Pelton Wheel
392(1)
18.6.2.2 Component of Pelton Wheel
393(1)
18.7 Selection of Turbine
394(2)
18.8 Setting of Turbines
396(2)
18.8.1 Cavitations
397(1)
18.8.1.1 Control of Cavitations
398(1)
18.9 Selection Procedure of Turbine
398(3)
18.10 Example
401(3)
18.11 Generator and Driving System
404(1)
18.12 Rating and Various Characteristics
405(1)
18.13 Components of Hydrogenerator
406(5)
18.13.1 Shaft, Couplings, and Alignment
407(1)
18.13.2 Rotor Assembles
407(1)
18.13.2.1 Stator Frame
408(1)
18.13.3 Stator Core
408(1)
18.13.4 Armature Windings
409(1)
18.13.5 Bearings
410(1)
18.13.5.1 Plane Bearing
410(1)
18.13.5.2 Rolling Element Bearing
411(1)
18.14 Control System
411(2)
18.14.1 Turbine Controls
412(1)
18.14.2 Generator Controls
412(1)
18.14.3 Plant Automatic Control
412(1)
Bibliography
413(2)
Index 415
Suchintya Kumar Sur is Visiting Professor at Jaipur National University and former Head of the Department of Civil Engineering at Jaipur Engineering College and Research Centre. He had also served as Vice President (Construction) at M/s Reliance Industries Ltd, Mumbai and Manger Construction at Engineers India Limited, New Delhi, and SDO in North Eastern Electric Power Corporation Ltd, Shillong. He has expertise in the construction of a major hydel project in Limestone Valley and was instrumental in completion of the worlds largest grassroots oil refinery and oil refining hub in Jamnagar, India in record time which became a landmark of Indian success in the global market. He is equally adept in handling of mechanical underground and above ground piping networks with high temperature and pressure, along with erection and commissioning of dynamic, static, and rotary equipments. He has flair in earthquake engineering and design of RCC structures.