Atnaujinkite slapukų nuostatas

El. knyga: Practical Radiation Oncology Physics E-Book: A Companion to Gunderson & Tepper's Clinical Radiation Oncology

, (Professor of Physics, Residency Co-Director, Department of Radiation Oncology, University of California, Davis, Sacramento, California), (Professor, Interim Director of Medical Physics, Department of Radiation Oncology, University of W),
  • Formatas: PDF+DRM
  • Išleidimo metai: 24-Jun-2015
  • Leidėjas: Elsevier - Health Sciences Division
  • Kalba: eng
  • ISBN-13: 9780323263757
Kitos knygos pagal šią temą:
  • Formatas: PDF+DRM
  • Išleidimo metai: 24-Jun-2015
  • Leidėjas: Elsevier - Health Sciences Division
  • Kalba: eng
  • ISBN-13: 9780323263757
Kitos knygos pagal šią temą:

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

Perfect for radiation oncologists, medical physicists, and residentsin both fields, Practical Radiation Oncology Physics provides a concise and practical summary of the current practice standards in therapeutic medical physics. A companion to the fourth edition ofClinical Radiation Oncology, by Drs. Leonard Gunderson and Joel Tepper, this indispensable guide helps you ensure a current, state-of-the art clinical practice.Covers key topics such as relative and in-vivo dosimetry, imaging and clinical imaging, stereotactic body radiation therapy, and brachytherapy.Describes technical aspects and patient-related aspects of current clinical practice.Offers key practice guideline recommendations from professional societies throughout - including AAPM, ASTRO, ABS, ACR, IAEA, and others.Includes therapeutic applications of x-rays, gamma rays, electron and charged particle beams, neutrons, and radiation from sealed radionuclide sources, plus theequipment associated with their production, use, measurement, and evaluation.Features a "For the Physician" box in each chapter, which summarizes the key points with the most impact on the quality and safety of patient care.Provides a user-friendly appendix with annotated compilations of all relevant recommendation documents.Includes an enhanced Expert Consult eBook with open-ended questions, ideal for self-assessment and highlighting key points from each chapter. Download and search all of the text, figures, and references on any mobile device.

Recenzijos

"This comprehensive book closes the gap between the textbook and clinical practice. It answers the questions that physicists might initially have when trying to implement a new program, a new procedure, etc. The book will be a great reference for medical physics residents and junior physicists, as well as for physicists who are about to implement a new procedure. Medical residents can use the book to gain insights into the physics aspects of treatments. The authors have managed to distill the most important, currently available information to create a truly practical book on radiation oncology physics. This will be a valuable book for the radiation oncology team."

-Sotirios Stathakis, PhD (University of Texas Health Sciences Center at San Antonio) Doody's Score: 98 - 5 Stars

PART I Building Blocks
1(178)
1 Reference dosimetry for ionizing radiation
2(12)
1.1 Introduction
2(1)
1.2 Standard Megavoltage Photon Beams
3(2)
1.3 Nonstandard Megavoltage Photon Beams
5(1)
1.4 Megavoltage Electron Beams
6(1)
1.5 Kilovoltage Photon Beams
7(1)
1.6 Brachytherapy Sources
7(2)
1.7 Proton Radiotherapy Beams
9(1)
1.8 Potential Errors in Reference Dosimetry
10(1)
1.9 Dosimetric Uncertainties
10(4)
2 Relative dosimetry for MV beams
14(16)
2.1 Introduction
14(1)
2.2 Commissioning Equipment
15(3)
2.3 Best Practice for Beam Scanning
18(3)
2.4 Relative Dosimetry Measurements
21(6)
2.5 Safety Considerations
27(3)
3 In-vivo dosimetry
30(10)
3.1 Introduction
30(1)
3.2 Clinical Process
31(1)
3.3 Surface Dosimeters
31(6)
3.4 Implantable Dosimeters
37(1)
3.5 Transmission Dosimeters
37(3)
4 Quality assurance and commissioning of new radiotherapy technology
40(21)
4.1 Introduction
40(1)
4.2 Precommissioning Considerations and Equipment Purchase
40(2)
4.3 Commissioning and QA of Treatment Units
42(10)
4.4 Imaging Units
52(3)
4.5 Ancillary Equipment
55(1)
4.6 QA of Data Transfer
55(1)
4.7 QA Program Evaluation
55(1)
4.8 Future Directions in QA
56(5)
5 Quality assurance of radiotherapy dose calculations
61(26)
5.1 Introduction
61(1)
5.2 Treatment Planning System Commissioning
62(12)
5.3 Ongoing QA
74(1)
5.4 Patient-Specific QA
74(13)
6 Immobilization techniques in radiotherapy
87(8)
6.1 Introduction
87(1)
6.2 Immobilization Devices and Techniques
88(4)
6.3 Dosimetric Effects of Table Tops and Immobilization Devices
92(1)
6.4 Emerging Questions
93(2)
7 Image guidance and localization technologies for radiotherapy
95(13)
7.1 Introduction
95(1)
7.2 Overview of Clinical Imaging Systems
95(2)
7.3 Concepts in Radiographic Imaging: Image Quality and Dose
97(2)
7.4 Quality Assurance for Imaging Systems
99(9)
8 Brachytherapy
108(15)
8.1 Introduction
108(1)
8.2 Radioisotopes for Brachytherapy
109(1)
8.3 Brachytherapy Applicators
109(1)
8.4 The Brachytherapy Process
109(2)
8.5 Brachytherapy Workflow
111(5)
8.6 QA of the Brachytherapy Process
116(1)
8.7 Brachytherapy Dose Calculations, Dose Specification, and Dose Reporting
117(1)
8.8 Dose Specification and Dose Reporting
118(1)
8.9 Personnel and Qualifications
118(2)
8.10 Source Handling, Transport, Storage, and Inventory
120(3)
9 Proton radiotherapy
123(11)
9.1 Introduction
123(2)
9.2 Physics of Clinical Particle Beams
125(1)
9.3 Proton Beam Clinical Delivery Technologies
126(3)
9.4 Proton Dose Calibration and Dose Reporting
129(1)
9.5 Proton Treatment Planning
130(4)
10 Radiation safety and shielding in radiotherapy
134(22)
10.1 Introduction
134(1)
10.2 Risk Levels and Radiation
135(1)
10.3 Units
135(1)
10.4 Regulatory Limits
136(1)
10.5 Release of Patients with Radioactive Materials
137(1)
10.6 Personnel Monitoring
137(2)
10.7 Shielding
139(12)
10.8 Source Receipt, Inventory, and Return
151(1)
10.9 Radiation Safety Training
152(1)
10.10 Regulatory Oversight
153(3)
11 Information technology in radiation oncology
156(9)
11.1 Introduction
156(1)
11.2 Networks and Network Safety
156(1)
11.3 Electronic Health Records Systems
157(2)
11.4 Integrating the Healthcare Enterprise---Radiation Oncology
159(1)
11.5 Digital Imaging and Communications in Medicine
159(1)
11.6 Database and Database Management
160(1)
11.7 Database Backup
161(1)
11.8 Storage and Archive
162(1)
11.9 Safety and Data Integrity
162(3)
12 Quality and safety improvement in radiation oncology
165(14)
12.1 Introduction
165(2)
12.2 Features of an Effective Quality Management System
167(3)
12.3 Techniques for Quality Improvement
170(9)
PART II Clinical Applications
179(148)
13 Simulation for radiotherapy treatment planning
180(9)
13.1 Introduction
180(1)
13.2 Immobilization, Setup, and Marking
181(2)
13.3 Scanning the Patient for CT Simulation
183(1)
13.4 Surface Capture Using Optical Tracking
184(1)
13.5 Postscan Processing
184(1)
13.6 Clinical Safety-Related Considerations
185(1)
13.7 Simulation for Brachytherapy
186(3)
14 Treatment planning and quality metrics
189(18)
14.1 Introduction
189(2)
14.2 Patient Positioning and Immobilization
191(1)
14.3 Image Acquisition and Registration
191(1)
14.4 Anatomy Definition
192(2)
14.5 Margins
194(1)
14.6 Normal Tissue Dose Constraints and Goals
195(1)
14.7 Treatment Techniques
195(2)
14.8 Dose Optimization/Calculation
197(1)
14.9 Plan Evaluation and Dose Reporting
197(3)
14.10 Plan Implementation and Review
200(1)
14.11 Treatment Interruptions and Changes in Fractionation
200(1)
14.12 Developing Techniques in Treatment Planning
201(6)
15 The use of electrons for external beam radiotherapy
207(14)
15.1 Introduction
207(1)
15.2 Beam Characteristics
208(5)
15.3 Obliquity and Surface Irregularity
213(1)
15.4 Inhomogeneity
213(1)
15.5 Bolus and Compensators
214(3)
15.6 Shielding Adjacent Structures
217(1)
15.7 General Clinical Considerations
218(1)
15.8 Emerging Trends in Electron Beam Radiotherapy
218(3)
16 IMRT and VMAT
221(7)
16.1 Introduction
221(2)
16.2 Nomenclature for Structures
223(1)
16.3 Margins in IMRT/VMAT Planning
223(1)
16.4 Dose Reporting and Record Keeping
223(1)
16.5 IMRT/VMAT Treatment Planning
224(1)
16.6 IMRT and VMAT Delivery and OA
225(3)
17 SRS and SBRT
228(13)
17.1 Introduction
228(1)
17.2 Technical Requirements
228(1)
17.3 Policies and Procedures
229(1)
17.4 Staffing
230(1)
17.5 Patient Selection and Development of Treatment Protocols
230(1)
17.6 Simulation Imaging
231(1)
17.7 Margins
232(1)
17.8 Dose Constraints and Treatment Planning
232(5)
17.9 Treatment Delivery
237(4)
18 Clinical aspects of image guidance and localization in radiotherapy
241(11)
18.1 Introduction
241(1)
18.2 Overview of Image Guidance Definitions and Procedures
241(4)
18.3 Imaging Protocols and Issues in Clinical Use
245(1)
18.4 Anatomic Changes and Adaptive Radiation Therapy
246(1)
18.5 Organizing and Managing an Image Guidance Program
247(1)
18.6 Image Guidance Applications
248(4)
19 Respiratory motion management for external beam radiotherapy
252(12)
19.1 Introduction
252(1)
19.2 Measuring Respiratory Motion
253(2)
19.3 Tracking the Respiratory Cycle Through Anatomic Surrogates
255(1)
19.4 Motion Encompassing
256(1)
19.5 Limiting Respiratory Motion
257(1)
19.6 Respiratory Gating
258(1)
19.7 Breath-Hold Techniques
258(1)
19.8 Respiratory Motion and Treatment Planning
259(1)
19.9 Imaging and Tracking During Treatment
260(1)
19.10 Quality Assurance
261(3)
20 Intracavitary brachytherapy
264(13)
20.1 Introduction
264(1)
20.2 Intracavitary Treatment Sites
264(7)
20.3 Treatment Planning
271(6)
21 Interstitial brachytherapy
277(10)
21.1 Introduction
277(1)
21.2 Clinical Targets
277(4)
21.3 Day of Implant Procedure
281(4)
21.4 Staff Training and Supervision Requirements
285(2)
22 Prostate seed implant
287(18)
22.1 Introduction
287(1)
22.2 Sources
288(4)
22.3 Treatment Planning
292(4)
22.4 OR Procedure
296(1)
22.5 Postprocedure Follow-Up Imaging and Plan Analysis
297(2)
22.6 Safety, Policies, and Procedures
299(6)
23 Intraoperative radiotherapy (IORT)
305(8)
23.1 Introduction
305(1)
23.2 Technologies and Techniques for IORT
306(4)
23.3 Safety, Staffing, and OR Considerations
310(3)
24 Special procedures
313(14)
24.1 Introduction
313(1)
24.2 Total Body Irradiation
313(4)
24.3 Total Skin Electron Treatments
317(1)
24.4 Ocular Tumors
318(1)
24.5 Microspheres
319(2)
24.6 Intravascular Brachytherapy
321(1)
24.7 Pregnant Patients
322(5)
Appendix I Resource Documents 327(23)
Appendix II Glossary 350(4)
Index 354