Atnaujinkite slapukų nuostatas

El. knyga: Five Practices in Practice [ High School]: Successfully Orchestrating Mathematics Discussions in Your High School Classroom

4.60/5 (24 ratings by Goodreads)
(Northwestern University, USA), (University of Wisconsin-Milwaukee, USA), (University of Pittsburgh, USA)
  • Formatas: PDF+DRM
  • Serija: Corwin Mathematics Series
  • Išleidimo metai: 26-Feb-2020
  • Leidėjas: Corwin Press Inc
  • Kalba: eng
  • ISBN-13: 9781544321240
  • Formatas: PDF+DRM
  • Serija: Corwin Mathematics Series
  • Išleidimo metai: 26-Feb-2020
  • Leidėjas: Corwin Press Inc
  • Kalba: eng
  • ISBN-13: 9781544321240

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

"This book makes the five practices accessible for high school mathematics teachers. Teachers will see themselves and their classrooms throughout the book. High school mathematics departments and teams can use this book as a framework for engaging professional collaboration. I am particularly excited that this book situates the five practices as ambitious and equitable practices."

Robert Q. Berry, III

NCTM President 2018-2020

Samuel Braley Gray Professor of Mathematics Education, University of Virginia

Take a deeper dive into understanding the five practicesanticipating, monitoring, selecting, sequencing, and connectingfor facilitating productive mathematical conversations in your high school classrooms and learn to apply them with confidence. This follow-up to the modern classic, 5 Practices for Orchestrating Productive Mathematics Discussions, shows the five practices in action in high school classrooms and empowers teachers to be prepared for and overcome the challenges common to orchestrating math discussions.

The chapters unpack the five practices and guide teachers to a deeper understanding of how to use each practice effectively in an inquiry-oriented classroom. This book will help you launch meaningful mathematical discussion through

·         Key questions to set learning goals, identify high-level tasks, anticipate student responses, and develop targeted assessing and advancing questions that jumpstart productive discussionbefore class begins

·         Video excerpts from real high school classrooms that vividly illustrate the five practices in action and include built-in opportunities for you to consider effective ways to monitor students ideas, and successful approaches for selecting, sequencing, and connecting students ideas during instruction

·         "Pause and Consider" prompts that help you reflect on an issueand, in some cases, draw on your own classroom experienceprior to reading more about it

·         "Linking To Your Own Instruction" sections help you implement the five practices with confidence in your own instruction

The book and companion website provide an array of resources including planning templates, sample lesson plans, completed monitoring tools, and mathematical tasks. Enhance your fluency in the five practices to bring powerful discussions of mathematical concepts to life in your classroom.
List of Video Clips
xx
Foreword xxi
Dan Meyer
Preface xxiv
Acknowledgments xxvii
About the Authors xxx
Chapter 1 Introduction
The Five Practices in Practice: An Overview
3(2)
Purpose and Content
5(6)
Classroom Video Context
6(3)
Meet the Teachers
9(2)
Using This Book
11(5)
Norms for Video Viewing
12(1)
Getting Started!
13(3)
Chapter 2 Setting Goals and Selecting Tasks
Part One Unpacking the Practice: Setting Goals and Selecting Tasks
16(6)
Specifying the Learning Goal
16(2)
Identifying a High-Level Task That Aligns With the Goal
18(3)
Cori Moran's Attention to Key Questions: Setting Goals and Selecting Tasks
21(1)
Part Two Challenges Teachers Face: Setting Goals and Selecting Tasks
22(22)
Identifying Learning Goals
23(3)
Identifying a Doing-Mathematics Task
26(1)
Adapting an Existing Task
27(7)
Finding a Task in Another Resource
34(3)
Creating a Task
37(1)
Ensuring Alignment Between Task and Goals
38(2)
Launching a Task to Ensure Student Access
40(2)
Launching a Task---Analysis
42(2)
Conclusion
44(6)
Chapter 3 Anticipating Student Responses
Part One Unpacking the Practice: Anticipating Student Responses
50(12)
Getting Inside the Problem
51(1)
Getting Inside a Problem---Analysis
51(4)
Planning to Respond to Student Thinking
55(6)
Planning to Notice Student Thinking
61(1)
Cori Moran's Attention to Key Questions: Anticipating
62(1)
Part Two Challenges Teachers Face: Anticipating Student Responses
62(18)
Moving Beyond the Way YOU Solved the Problem
63(12)
Being Prepared to Help Students Who Cannot Get Started
75(2)
Creating Questions That Move Students Toward the Mathematical Goal
77(3)
Conclusion
80(6)
Chapter 4 Monitoring Student Work
Part One Unpacking the Practice: Monitoring Student Work
86(16)
Tracking Student Thinking
87(1)
Assessing Student Thinking
88(3)
Exploring Student Problem-Solving Approaches---Analysis
91(3)
Assessing Student Thinking---Analysis
94(1)
Advancing Student Thinking
95(2)
Advancing Student Thinking, Part One---Analysis
97(3)
Advancing Student Thinking, Part Two---Analysis
100(1)
Cori Moran's Attention to Key Questions: Monitoring
101(1)
Part Two Challenges Teachers Face: Monitoring Student Work
102(15)
Trying to Understand What Students Are Thinking
102(2)
Determining What Students Are Thinking, Part One---Analysis
104(2)
Determining What Students Are Thinking, Part Two---Analysis
106(2)
Keeping Track of Group Progress
108(2)
Following Up With Students---Analysis
110(1)
Involving All Members of a Group
111(4)
Holding All Students Accountable---Analysis
115(2)
Conclusion
117(5)
Chapter 5 Selecting and Sequencing Student Solutions
Part One Unpacking the Practice: Selecting and Sequencing Student Solutions
122(12)
Identifying Student Work to Highlight
123(3)
Selecting Student Solutions---Analysis
126(2)
Purposefully Selecting Individual Presenters
128(3)
Establishing a Coherent Storyline
131(2)
Cori Moran's Attention to Key Questions: Selecting and Sequencing
133(1)
Part Two Challenges Teachers Face: Selecting and Sequencing Student Solutions
134(32)
Selecting Only Solutions Relevant to Learning Goals
135(9)
Selecting Solutions That Highlight Key Ideas---Analysis
144(3)
Expanding Beyond the Usual Presenters
147(6)
Deciding What Work to Share When the Majority of Students Were Not Able to Solve the Task and Your Initial Goal No Longer Seems Obtainable
153(3)
Moving Forward When a Key Strategy Is Not Produced by Students
156(2)
Determining How to Sequence Incorrect and/or Incomplete Solutions
158(8)
Conclusion
166(6)
Chapter 6 Connecting Student Solutions
Part One Unpacking the Practice: Connecting Student Solutions
172(9)
Connecting Student Work to the Goals of the Lesson
173(2)
Connecting Student Work to the Goals of Lesson, Part One---Analysis
175(2)
Connecting Student Work to the Goals of Lesson, Part Two---Analysis
177(1)
Connecting Different Solutions to Each Other
178(2)
Connecting Different Solutions to Each Other---Analysis
180(1)
Cori Moran's Attention to Key Questions: Connecting
180(1)
Part Two Challenges Teachers Face: Connecting Student Responses
181(27)
Keeping the Entire Class Engaged and Accountable During Individual Presentations
182(6)
Holding Students Accountable---Analysis
188(3)
Ensuring That Key Mathematical Ideas Are Made Public and Remain the Focus
191(4)
Making Key Ideas Public, Part One---Analysis
195(4)
Making Key Ideas Public, Part Two---Analysis
199(3)
Making Sure That You Do Not Take Over the Discussion and Do the Explaining
202(3)
Running Out of Time
205(3)
Conclusion
208(6)
Chapter 7 Looking Back and Looking Ahead
Why Use the Five Practices Model
214(3)
Getting Started With the Five Practices
217(5)
Plan Lessons Collaboratively
217(2)
Observe and Debrief Lessons
219(1)
Reflect on Your Lesson
219(1)
Video Clubs
220(1)
Organize a Book Study
221(1)
Explore Additional Resources
221(1)
Frequency and Timing of Use of the Five Practices Model
222(1)
Conclusion
223(4)
Resources
Appendix A Web-Based Resources for Tasks and Lesson Plans 227(2)
Appendix B Monitoring Chart 229(1)
Appendix C Ms. Moran's Monitoring Chart 230(3)
Appendix D Resources for Holding Students Accountable 233(1)
Appendix E Lesson-Planning Template 234(1)
References 235(6)
Index 241
Margaret (Peg) Smith is a Professor Emerita at University of Pittsburgh. Over the past three decades she has been developing research-based materials for use in the professional development of mathematics teachers. She has coauthored several books including Five Practices for Orchestrating Productive Discussions (with Mary Kay Stein), the middle and high school versions of the Taking Action series (with Melissa Boston, Fredrick Dillon, Stephen Miller, and Lynn Raith), and The 5 Practices in Practice: Successfully Orchestrating Mathematics Discussion in Your Classroom series (with Victoria Bill, Miriam Gameron Sherin, and Michael Steele). In 2006 she received the Chancellors Distinguished Teaching Award given annually to honor outstanding faculty at the University of Pittsburgh. In 2009 she received the award for Excellence in Teaching in Mathematics Teacher Education from AMTE. In April 2019 she received the Lifetime Achievement Award from NCTM.

Michael D. Steele is a Professor and Chairperson of the Department of Educational Studies in Teachers College at Ball State University. He is a Past President of the Association of Mathematics Teacher Educators, current director-at-large of the National Council of Teachers of Mathematics, and editor of the journal Mathematics Teacher Educator. A former middle and high school mathematics and science teacher, Dr. Steele has worked with preservice secondary mathematics teachers, practicing teachers, administrators, and doctoral students across the country. He has published several books and research articles focused on supporting mathematics teachers in enacting research-based effective mathematics teaching practices.

Dr. Steeles work focuses on supporting secondary math teachers in developing mathematical knowledge for teaching, integrating content and pedagogy, through teacher preparation and professional development. He is the co-author of NCTMs Taking Action: Implementing Effective Mathematics Teaching Practice in Grades 6-8. He is a co-author of several research-based professional development volumes, including The 5 Practices in Practice: Successfully Orchestrating Mathematics Discussions in Your High School Classroom,

Mathematics Discourse in Secondary Classrooms, and We Reason and Prove for All Mathematics. He directed the NSF-funded Milwaukee Mathematics Teacher Partnership, an initiative focused on microcredential-based teacher professional development and leadership. His research focuses on teacher learning through case-based professional development, and he has been an investigator on several National Science Foundation-funded projects focused on teacher learning and development. He also studies the influence of curriculum and policy in high school mathematics, with a focus on Algebra I policy and practice, and is the author of A Quiet Revolution: One Districts Story of Radical Curricular Change in Mathematics, a resource focused on reforming high school mathematics teaching and learning. He works regularly with districts across the country to design and deploy teacher professional development to strengthen effective secondary teaching practice.

Dr. Steele was awarded the inaugural Best Reviewer award for Mathematics Teacher Educator and was author of the 2016 Best Article in Journal of Research in Leadership Education. He is an active member of and regular presenter for the National Council of Teachers of Mathematics, the National Council of Supervisors of Mathematics, and the Association of Mathematics Teacher Educators. He reviews regularly for major mathematics education and teacher education journals.