Atnaujinkite slapukų nuostatas

El. knyga: Pressure and Temperature Well Testing

  • Formatas: 276 pages
  • Išleidimo metai: 21-Oct-2015
  • Leidėjas: CRC Press Inc
  • Kalba: eng
  • ISBN-13: 9781498733625
  • Formatas: 276 pages
  • Išleidimo metai: 21-Oct-2015
  • Leidėjas: CRC Press Inc
  • Kalba: eng
  • ISBN-13: 9781498733625

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

The book comprises two parts: Pressure and Flow Well Testing (Part I) and Temperature Well Testing (Part II), and contains numerous authors developments. Due to the similarity in Darcys and Fouriers laws the same differential diffusivity equation describes the transient flow of incompressible fluid in porous medium and heat conduction in solids. Therefore it is reasonable to assume that the techniques and data processing procedures of pressure well tests can be applied to temperature well tests. The book presents new methods to determine the formation of permeability and skin factors from tests conducted in simulated wells, designing interference well tests, processing constant bottom-hole pressure tests, estimation of the formation temperature and geothermal gradients from temperature surveys and logs, in-situ determination of the formation thermal conductivity and contact thermal resistance of boreholes, temperature regime of boreholes (cementing of production liners), and the recovery of thermal equilibrium in deep and superdeep wells. Processing and analysis of pressure and geothermal data are shown on numerous field examples from different regions of the world.





The book is intended for students, engineers, and researchers in the field of hydrocarbon geophysics and geology, groundwater searching and exploitation, and subsurface environment examination. It will be also useful for specialists studying pressure and temperature in parametric deep and superdeep wells.
Preface v
Short Biographies of the Authors xiii
PART I Pressure and Flow Well Testing
1 Pressure and Temperature: Drawdown Well Testing: Similarities and Differences
3(11)
1.1 Mathematical Models
4(4)
1.1.1 Well as a cylindrical source
4(2)
1.1.2 Well as a linear source
6(1)
1.1.3 The corresponding parameters
7(1)
1.2 Drainage and Thermal Influence Radius
8(1)
1.2.1 Drainage radius
8(1)
1.2.2 Thermal influence radius
8(1)
1.3 Skin Factor and Borehole Storage
9(1)
1.3.1 Fluid flow
9(1)
1.4 Pressure Drawdown Well Testing
10(4)
1.4.1 Field example (Earlougher 1977, Example 3.1)
11(3)
2 The Adjusted Circulation Time
14(3)
3 Determination of the Formation Permeability and Skin Factor from a Variable Flow Rate Drawdown Test
17(6)
3.1 Diffusivity and Boundary Conditions
17(1)
3.2 Dimensionless Variables
18(1)
3.3 Duhamel Integral
18(1)
3.4 Working Formulas
19(4)
3.4.1 Field example
19(2)
3.4.2 Simulated example
21(2)
4 Short Term Testing Method for Stimulated Wells---Field Examples
23(17)
4.1 SST Method: A Brief Review
23(1)
4.2 Solutions for Cylindrical and Linear Sources
24(1)
4.3 The Basic Equation
25(1)
4.4 Pressure Buildup Test
26(2)
4.5 Field Examples
28(7)
4.5.1 Oil well IS-21, PT-1
29(2)
4.5.2 Oil well IS-7, PT-1
31(4)
4.6 Derivation of Equation (4-13)
35(5)
5 Determination of the Skin Factor for a Well Produced at a Constant Bottom-Hole Pressure
40(6)
5.1 Dimensionless Flow Rate
41(2)
5.2 Skin Factor
43(1)
5.3 Example
43(3)
6 Evaluation of the Efficiency of Wellbore Stimulation Operations
46(5)
6.1 A Well as a Cylindrical Source
47(1)
6.2 Example
48(3)
7 Designing an Interference Well Test in a Geothermal Reservoir
51(10)
7.1 Determination of the Formation Permeability, Hydraulic Diffusivity and the Porosity
51(1)
7.2 Working Equations
52(2)
7.3 Drainage Radius
54(1)
7.4 Test Designing Example
55(2)
7.5 Field Case
57(4)
8 Interference Well Testing---Variable Fluid Flow Rate
61(9)
8.1 Constant Flow Rate---the Basic Equation
62(1)
8.2 Variable Flow Rate
63(2)
8.3 Working Equations
65(5)
9 Determination of Formation Permeability and Skin Factor from Afterflow Pressure and Sandface Flow Rate
70(11)
9.1 Duhamel Integral
71(1)
9.2 Approximation of qD by a Polynomial
72(1)
9.3 Modification of the e-x Function
73(1)
9.4 Working Formulas
74(2)
9.4.1 Equation (9-2)
74(2)
9.4.2 Equation (9-3)
76(1)
9.5 Field Example
76(1)
9.6 Processing of Field Data and Results
77(2)
9.7 Discussion of Results
79(2)
10 Analyzing the Pressure Response during the Afterflow Period: Determination of the Formation Permeability and Skin Factor
81(8)
10.1 Duhamel Integral
81(1)
10.2 Approximation of qD by a Polynomial
82(1)
10.3 Working Formulas
83(2)
10.4 Field Examples
85(4)
11 Application of the Horner Method for a Well Produced at a Constant Bottom-hole Pressure
89(5)
11.1 Horner Method: A Short Description
89(1)
11.2 Pressure Drop
90(4)
12 Step-Pressure Testing
94(9)
12.1 Two Attractive Features
94(1)
12.2 Working Equations
95(8)
References to Part I
98(5)
PART II Temperature Well Testing
13 Determination of Formation Temperature from Bottom-Hole Temperature Logs: A Generalized Horner Method
103(12)
13.1 Mathematical Models
104(3)
13.1.1 Constant bore-face temperature
104(2)
13.1.2 Cylindrical source with a constant heat flow rate
106(1)
13.1.3 Well as a linear source
106(1)
13.2 Circulation Period
107(2)
13.3 Horner Method
109(2)
13.4 A New Equation
111(4)
13.4.1 Examples
112(3)
14 Three Points Method for Estimation of the Formation Temperature
115(18)
14.1 Shut-in Temperatures--Permafrost Zone
117(1)
14.2 Working Equation
117(2)
14.3 Unfrozen Well Section---the Initial Temperature Distribution
119(2)
14.4 Field Cases
121(10)
14.5 Laboratory Experiment
131(2)
15 Two Logs Method
133(5)
16 Determination of Formation Temperatures from Temperature Logs in Deep Boreholes: Comparison of Three Methods
138(9)
16.1 Homer Method
139(1)
16.2 Two Logs (Points) Method
139(1)
16.3 Three Points Method
139(1)
16.4 Results of Calculations and Discussion
139(8)
17 Geothermal Temperature Gradient
147(4)
18 Estimation of the Geothermal Gradients from Single Temperature Log-Field Cases
151(7)
18.1 Temperature Disturbance of Formations
152(1)
18.2 Wellbore Shut-in Temperature
152(1)
18.3 Prediction of the Geothermal Gradient
153(1)
18.4 Field Examples
154(4)
19 Radial Temperature Distribution
158(4)
19.1 Radial Temperature Distribution during Drilling
158(1)
19.2 Temperature Distribution in Formations during the Shut-In Period
159(3)
20 Cylindrical Probe with a Constant Temperature: Determination of the Formation Thermal Conductivity and Contact Thermal Resistance
162(5)
20.1 Effective Radius of the Heater
163(1)
20.2 Dimensionless Flow Rate
164(3)
20.2.1 Working formula
165(1)
20.2.2 Simulated example
165(2)
21 Well Temperature Testing: An Extension of the Slider's Method
167(12)
21.1 Slider's Method
169(1)
21.2 Effective Radius of the Heater
169(2)
21.3 Rate of Temperature Decline
171(4)
21.4 Well as a Cylindrical Source
175(4)
21.4.1 Temperature drawdown well test
176(1)
21.4.2 Simulated example
177(2)
22 Cementing of Casing in Hydrocarbon Wells: The Optimal Time Lapse to Conduct a Temperature Log
179(8)
22.1 Temperature Increase at Cement Hydration
180(2)
22.2 Working Equation
182(2)
22.3 Field Cases
184(3)
23 Cementing of Geothermal Wells---Radius of Thermal Influence
187(3)
23.1 Radius of Thermal Influence at Cementing
187(1)
23.2 Example of Calculations
188(2)
24 Temperature Regime of Boreholes: Cementing of Production Liners
190(12)
24.1 Bottom-Hole Circulating Temperatures: Field Data and Empirical Formula
191(8)
24.1.1 Comparison with API schedules
193(2)
24.1.2 The equivalent "API Wellbore" method
195(1)
24.1.3 The "API-EW method"
196(3)
24.2 The Shut-in Temperature
199(3)
24.2.1 Field example
199(3)
25 Recovery of the Thermal Equilibrium in Deep and Super Deep Wells: Utilization of Measurements While Drilling Data
202(10)
25.1 Empirical Equation
203(2)
25.1.1 Mississippi well
203(1)
25.1.2 Webb County, Texas
204(1)
25.2 Cumulative Heat Flow
205(1)
25.3 Drilling Mud Temperature as Linear Time Function
206(2)
25.4 Radius of Thermal Influence
208(1)
25.5 Shut-in Temperature
209(1)
25.6 Field Examples
210(2)
25.6.1 Mississippi well (Wooley et al. 1984)
210(1)
25.6.2 Webb County, Texas. Well #30 (Venditto and George 1984)
210(2)
26 The Duration of Temperature Monitoring in Wellbores: Permafrost Regions
212(12)
26.1 Shut-in Temperatures--Permafrost Zone
213(4)
26.2 Temperature Gradient and Estimation of the Permafrost Thickness
217(4)
26.3 Onset of Formations Freezeback
221(3)
27 The Effect of Thermal Convection and Casing on Temperature Regime of Boreholes
224(13)
27.1 Critical Temperature Gradient
225(2)
27.2 Convective Parameter, kp
227(2)
27.3 Deep Boreholes
229(5)
27.4 Thermal Effect of Casing
234(3)
Appendix A Hydrostatic Pressure
237(14)
A1 Fluid Densities at High Temperatures and High Pressures (HTHP)
237(1)
A2 Water Formation Volume Factor
238(1)
A3 Equation of State for Sodium Chloride Brine at HTHP
239(2)
A4 Density of Calcium Chloride Brine at HTHP
241(3)
A5 Hydrostatic Pressure---a General Equation
244(5)
A5.1 Equivalent static density
244(3)
A5.2 Example
247(2)
A6 Hydrostatic Pressure for Water Based Fluids and Brines
249(1)
A7 Example of Calculation
249(2)
References to Part II 251(8)
Index 259
Kutasov, Izzy M.; Eppelbaum, Lev V.