Atnaujinkite slapukų nuostatas

El. knyga: Prime Divisors and Noncommutative Valuation Theory

  • Formatas: PDF+DRM
  • Serija: Lecture Notes in Mathematics 2059
  • Išleidimo metai: 21-Aug-2012
  • Leidėjas: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • Kalba: eng
  • ISBN-13: 9783642311529
Kitos knygos pagal šią temą:
  • Formatas: PDF+DRM
  • Serija: Lecture Notes in Mathematics 2059
  • Išleidimo metai: 21-Aug-2012
  • Leidėjas: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • Kalba: eng
  • ISBN-13: 9783642311529
Kitos knygos pagal šią temą:

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

Classical valuation theory has applications in number theory and class field theory as well as in algebraic geometry, e.g. in a divisor theory for curves.  But the noncommutative equivalent is mainly applied to finite dimensional skewfields.  Recently however, new types of algebras have become popular in modern algebra; Weyl algebras, deformed and quantized algebras, quantum groups and Hopf algebras, etc. The advantage of valuation theory in the commutative case is that it allows effective calculations, bringing the arithmetical properties of the ground field into the picture.  This arithmetical nature is also present in the theory of maximal orders in central simple algebras.  Firstly, we aim at uniting maximal orders, valuation rings, Dubrovin valuations, etc. in a common theory, the theory of primes of algebras.  Secondly, we establish possible applications of the noncommutative arithmetics to interesting classes of algebras, including the extension of central valuations to nice classes of quantized algebras, the development of a theory of Hopf valuations on Hopf algebras and quantum groups, noncommutative valuations on the Weyl field and interesting rings of invariants and valuations of Gauss extensions.
1 General Theory of Primes
1(108)
1.1 Prime Places of Associative Rings
1(7)
1.2 Primes in Algebras
8(11)
1.3 Value Functions and Prime Filtration
19(14)
1.4 Dubrovin Valuations
33(9)
1.5 Ideal Theory of Dubrovin Valuation Rings
42(16)
1.6 Dubrovin Valuation Rings of Q with Finite Dimension Over Its Center
58(12)
1.7 Gauss Extensions
70(18)
1.8 Filtrations by Totally Ordered Groups
88(8)
1.9 Reductions of Algebras and Filtrations
96(5)
1.10 Appendix: Global Dimension and Regularity of Reductions
101(8)
2 Maximal Orders and Primes
109(66)
2.1 Maximal Orders
109(6)
2.2 Krull Orders
115(17)
2.3 Ore Extensions Over Krull Orders
132(12)
2.4 Non-commutative Valuation Rings in K(X; σ, δ)
144(9)
2.5 Arithmetical Pseudovaluations and Divisors
153(11)
2.6 The Riemann--Roch Theorem for Central Simple Algebras Over Function Fields of Curves
164(11)
3 Extensions of Valuations to Quantized Algebras
175(38)
3.1 Extension of Central Valuations
175(8)
3.2 Discrete Valuations on the Weyl Skewfield
183(10)
3.3 Some Divisor Theory for Weyl Fields Over Function Fields
193(4)
3.4 Hopf Valuation Filtration
197(16)
Bibliography 213(4)
Index 217