Atnaujinkite slapukų nuostatas

Principles of Astronomical Telescope Design 2009 ed. [Kietas viršelis]

  • Formatas: Hardback, 634 pages, aukštis x plotis: 235x155 mm, weight: 2400 g, 50 Illustrations, black and white; 634 p. 50 illus., 1 Hardback
  • Serija: Astrophysics and Space Science Library 360
  • Išleidimo metai: 28-May-2009
  • Leidėjas: Springer-Verlag New York Inc.
  • ISBN-10: 0387887903
  • ISBN-13: 9780387887906
  • Formatas: Hardback, 634 pages, aukštis x plotis: 235x155 mm, weight: 2400 g, 50 Illustrations, black and white; 634 p. 50 illus., 1 Hardback
  • Serija: Astrophysics and Space Science Library 360
  • Išleidimo metai: 28-May-2009
  • Leidėjas: Springer-Verlag New York Inc.
  • ISBN-10: 0387887903
  • ISBN-13: 9780387887906

As a complete summary of the author's twenty five years of experience in telescope design, this book provides a general introduction as well as discussing the theory in depth, and covering Radio, Infrared, Optical, X-Ray and Gamma-Ray wavelengths.



This book presents a complete summary of the author's twenty five years of experience in telescope design. It provides a general introduction to every aspect of telescope design. It also discusses the theory behind telescope design in depth, which makes it a good reference book for professionals. It covers Radio, Infrared, Optical, X-Ray and Gamma-Ray wavelengths. Originally published in Chinese.

Recenzijos

From the reviews:

This 630-page book provides a very comprehensive engineering and science study of telescopes used for astronomy . The technical level of the book is for graduate engineers and astronomers . I reviewed some of the algebra in detail and found it to be complete and understandable. I predict that the book will find broad use among the engineering and astronomical communities for years into the future, and I recommend this book to astronomers and engineers who build astronomical telescopes and instruments. (James B. Breckinridge, The Observatory, Vol. 130, October, 2010)

The book offers more of an encyclopedic review of a wide range of facets on the subjects of design, construction, calibration, and operation of telescopes used in all parts of the electromagnetic spectrum. A short chapter with tables of all major telescopes in the world closes the book. The book will be most useful to readers with an understanding of telescope, who want to obtain a feeling for how problems in other wavelength regimes have been attacked. (Jacob W. M. Baars, The Radio Science Bulletin, Issue 335, December, 2010)

1 Fundamentals of Optical Telescopes
1
1.1 A Brief History of Optical Telescopes
1
1.2 General Astronomical Requirements
6
1.2.1 Angular Resolution
6
1.2.2 Light Collecting Power and Limiting Star Magnitude
14
1.2.3 Field of View and Combined Efficiency
25
1.2.4 Atmospheric Windows and Site Selection
28
1.3 Fundamentals of Astronomical Optics
32
1.3.1 Optical Systems for Astronomical Telescopes
32
1.3.2 Aberrations and Their Calculations
40
1.3.3 Formulas of Telescope Aberrations
46
1.3.4 Field Corrector Design
51
1.3.5 Ray Tracing, Spot Diagram, and Merit Function
57
1.4 Modern Optical Theory
62
1.4.1 Optical Transfer Function
62
1.4.2 Wave Aberrations and Modulation Transfer Function
68
1.4.3 Wavefront Error and the Strehl Ratio
73
1.4.4 Image Spatial Frequency
74
1.4.5 Image Property of a Segmented Mirror System
81
References
84
2 Mirror Design For Optical Telescopes
87
2.1 Specifications for Optical Mirror Design
87
2.1.1 Fundamental Requirements for Optical Mirrors
87
2.1.2 Mirror Surface Error and Mirror Support Systems
90
2.1.3 Surface Error Fitting and Slope Error Expression
100
2.2 Lightweight Primary Mirror Design
101
2.2.1 Significance of Lightweight Mirrors for Telescopes
101
2.2.2 Thin Mirror Design
102
2.2.3 Honeycomb Mirror Design
106
2.2.4 Multi-Mirror Telescopes
109
2.2.5 Segmented Mirror Telescopes
111
2.2.6 Metal and Lightweight Minors
115
2.3 Mirror Polishing and Mirror Mirror Supporting
119
2.3.1 Material Properties of Optical Mirrors
119
2.3.2 Optical Mirror Polishing,
122
2.3.3 Vacuum Coating
125
2.3.4 Mirror Support ing Mechanisms
126
2.4 Mirror Seeing and Stray Light Control
131
2.4.1 Mirror Seeing Effect
131
2.4.2 Stray Light Control
135
References
139
3 Telescope Structures and Control System
141
3.1 Telescope Mounting
141
3.1.1 Equatorial Mounting
141
3.1.2 Altitude-Azimuth Mounting
143
3.1.3 Stewart Platform Mounting
151
3.1.4 Fixed Mirror or Fixed Altitude Mountings
158
3.2 Telescope Tube and Other Structure Design
159
3.2.1 Specifications for Telescope Tube Design
159
3.2.2 Telescope Tube Design
160
3.2.3 Support Vane Design for Secondary Mirror
164
3.2.4 Telescope Bearing Design
165
3.2.5 Structural Static Analysis
170
3.3 Telescope Drive and Control
174
3.3.1 Specifications of a Telescope Drive System
174
3.3.2 Trends in Drive System Design
176
3.3.3 Encoder Systems for Telescopes
177
3.3.4 Pointing Error Corrections
187
3.3.5 Servo Control and Distributed Intelligence
189
3.3.6 Star Guiding
194
3.4 Structural Dynamic Analysis
198
3.4.1 Wind and Earthquake Spectrums
198
3.4.2 Dynamic Simulation of Telescope Structures
205
3.4.3 Combined Structural and Control Simulation
211
3.4.4 Structure Vibration Control
212
3.4.5 Telescope Foundation Design
218
References
220
4 Advanced Techniques for Optical Telescopes
223
4.1 Active and Adaptive Optics
223
4.1.1 Basic Principles of Active and Adaptive Optics
223
4.1.2 Wavefront Sensors
226
4.1.3 Actuators, Deformable Mirrors, Phase Correctors, and Metrology Systems
236
4.1.4 Active Optics System and Phasing Sensors
244
4.1.5 Curvature Sensors and Tip-Tilt Devices
258
4.1.6 Atmospheric Disturbance and Adaptive Optics Compensation
264
4.1.7 Artificial Laser Guide Star and Adaptive Optics
270
4.1.8 Atmosphere Tomography and Multi-Conjugate Adaptive Optics
275
4.1.9 Adaptive Secondary Mirror Design
280
4.2 Optical Interferometers
282
4.2.1 Speckle Interferometer Technique
282
4.2.2 Michelson Interferometer
286
4.2.3 Fizeau Interferometry
292
4.2.4 Intensity Interferometer
293
4.2.5 Amplitude Interferometer
300
References
305
5 Space Telescope Projects and their Development
309
5.1 Orbit Environmental Conditions
309
5.1.1 Orbit Definition
310
5.1.2 Orbit Thermal Conditions
312
5.1.3 Other Orbit Conditions
316
5.2 Attitude Control of Space Telescopes
321
5.2.1 Attitude Sensors
321
5.2.2 Attitude Actuators
323
5.3 Space Telescope Projects
323
5.3.1 Hubble Space Telescope
323
5.3.2 James Webb Space Telescope
326
5.3.3 The Space Interferometry Mission and Other Space Programs
331
References
336
6 Fundamentals of Radio Telescopes
339
6.1 Brief History of Radio Telescopes
339
6.2 Scientific Requirements for Radio Telescopes
341
6.3 Atmospheric Radio Windows and Site Selection
345
6.4 Parameters of Radio Antennas
351
6.4.1 Radiation Pattern
351
6.4.2 Antenna Gain
352
6.4.3 Antenna Temperature and Noise Temperature
353
6.4.4 Antenna Efficiency
355
6.4.5 Polarization Properties
357
6.4.6 Optical Arrangement of Radio Antennas
359
6.4.7 Characteristics of Offset Antennas
368
6.5 Radio Telescope Receivers
374
References
375
7 Radio Telescope Design
377
7.1 Antenna Tolerance and Homologous Design
377
7.1.1 Transmission Loss of Electromagnetic Waves
377
7.1.2 Antenna Tolerance Theory
379
7.1.3 Antenna Homology
384
7.1.4 Antenna Surface Fitting
387
7.1.5 Positional Tolerances of Antenna Reflector and Feed
390
7.1.6 Aperture Blockage and Ground Radiation Pickup
396
7.1.7 Antenna Surface Fitting Through Ray Tracing
401
7.2 Radio Telescope Structure Design
404
7.2.1 General Types of Radio Antennas
404
7.2.2 Steertible Parabolic Antenna Design
412
7.2.3 Wind Effect on Antenna Structures
418
7.2.4 Active Control of Radio Telescopes
420
7.3 Radio Interferometers
428
7.3.1 Fundamentals of Radio Interferometers
428
7.3.2 Aperture Synthesis Telescopes
430
7.3.3 Weiner Kliinchin and Van Cittert–Zernike Theorems
433
7.3.4 Calibration: Active Optics After Observation
434
7.3.5 Very Large Array, Expanded Very Large Array, and Square Kilometer Array
437
7.3.6 Very Long Baseline Interferometer
438
7.3.7 Space Radio Interferometers
439
References
440
8 Millimeter and Submillimeter Wavelength Telescopes
443
8.1 Thermal Effects on Millimeter Wavelength Telescopes
443
8.1.1 Characteristics of Millimeter Wavelength Telescopes
444
8.1.2 Thermal Conditions of Open Air Antennas
446
8.1.3 Heat Transfer Formulae
447
8.1.4 Panel Thermal Design
452
8.1.5 Backup Structure Thermal Design
455
8.2 Structural Design of Millimeter Wavelength Antennas
459
8.2.1 Panel Requirements and Manufacture
459
8.2.2 Backup Structure Design
463
8.2.3 Design of Chopping Secondary Mirror
465
8.2.4 Sensors, Metrology, and Optical Pointing Telescopes
468
8.2.5 Active Optics Used in Millimeter Antennas
471
8.2.6 Antenna Lightning Protection
472
8.3 Carbon Fiber Composite Materials
474
8.3.1 Properties of Carbon Fiber Composites
474
8.3.2 Thermal Deformation of Shaped Sandwiched Structures
477
8.3.3 CFRP-Metal Joint Design
482
8.4 Holographic Measurements and Quasi-Optics
487
8.4.1 Holographic Measurements of Antenna Surfaces
487
8.4.2 Surface Panel Adjusting
493
8.4.3 Quasi-Optics
494
8.4.4 Broadband Planar Antennas
496
References
498
9 Infrared, Ultraviolet, X-Ray, and Gamma Ray Telescopes
501
9.1 Infrared Telescopes
501
9.1.1 Requirements of Infrared Telescopes
501
9.1.2 Structural Properties of Infrared Telescopes
505
9.1.3 Balloon-Borne and Space-Based Infrared Telescopes
509
9.2 X-Ray and Ultraviolet Telescopes
513
9.2.1 Properties of X-Ray Radiation
513
9.2.2 X-Ray Imaging Telescopes
519
9.2.3 Space X-ray Telescopes
524
9.2.4 Microarcsecond X-ray Image Mission
526
9.2.5 Space Ultraviolet Telescopes
529
9.3 Gamma Ray Telescopes
531
9.3.1 Gamma Ray Fundamentals
531
9.3.2 Gamma Ray Coded Mask Telescopes
532
9.3.3 Compton Scattering and Pair Telescopes
535
9.3.4 Space Gamma Ray Telescopes
538
9.3.5 Air Cherenkov Telescopes
539
9.3.6 Extensive Air Shower Array
545
9.3.7 Major Ground-Based Gamma Ray Projects
546
References
547
10 Gravitational Wave, Cosmic Ray and Dark Matter Telescopes 549
10.1 Gravitational Wave Telescopes
549
10.1.1 Gravitational Wave Fundamentals
549
10.1.2 Resonant Gravitational Wave Telescopes
552
10.1.3 Laser Interferometer Gravitational Wave Detectors
555
10.1.4 Important Gravitational Wave Telescope Projects
562
10.1.5 Other Gravitational Wave and Gravity Telescopes
564
10.2 Cosmic Ray Telescopes
566
10.2.1 Cosmic Ray Spectrum
566
10.2.2 Cosmic Ray EAS Array Telescopes
569
10.2.3 Cosmic Ray Fluorescence Detectors
570
10.2.4 Magnetic Spectrometer Detectors
573
10.3 Dark Matter Detectors
574
10.3.1 Cold and Hot Dark Matter
574
10.3.2 Detection of Neutrinos
576
10.3.3 Status of Neutrino Telescopes
579
10.3.4 Detection of Cold Dark Matter
581
References
585
11 Review of Astronomical Telescopes 587
11.1 Introduction
587
11.2 Electromagnetic Wave and Atmosphere Transmission
588
11.3 Nonelectromagnetic Telescopes
592
11.4 Ground Astronomical Telescopes
593
11.5 Space Astronomical Telescopes
597
11.6 Man's Space Mission,
598
11.6.1 Moon Missions
599
11.6.2 Mercury Missions
601
11.6.3 Venus Missions
601
11.6.4 Mars Missions
602
11.6.5 Jupiter Missions
602
11.6.6 Saturn, Uranus, Neptune, and Pluto Missions
603
11.6.7 Asteroids and Comet Missions
603
11.7 Reconnaissance Telescopes
604
References
606
Appendix A 607
Appendix B 613
Index 615