Preface |
|
xvii | |
|
Chapter 1 Forecasting, the Why and the How |
|
|
1 | (18) |
|
|
2 | (1) |
|
|
2 | (4) |
|
|
3 | (1) |
|
|
3 | (1) |
|
|
3 | (1) |
|
|
4 | (1) |
|
|
4 | (2) |
|
1.2 What and Why Do Organizations Forecast? |
|
|
6 | (1) |
|
1.3 Examples of Forecasting Problems |
|
|
7 | (7) |
|
|
7 | (1) |
|
Seasonal Patterns for Retail Sales |
|
|
8 | (3) |
|
|
11 | (1) |
|
|
11 | (1) |
|
Sports Forecasting: Soccer (AKA Football!) |
|
|
11 | (2) |
|
Sports Forecasting: A Cross-sectional Example---Baseball Salaries |
|
|
13 | (1) |
|
|
14 | (1) |
|
|
14 | (1) |
|
1.5 Forecasting Step by Step |
|
|
15 | (1) |
|
1.6 Computer Packages for Forecasting |
|
|
16 | (1) |
|
|
16 | (1) |
|
|
17 | (1) |
|
|
17 | (1) |
|
Minicase 1.1 Inventory Planning |
|
|
17 | (1) |
|
Minicase 1.2 Long-Term Growth |
|
|
17 | (1) |
|
Minicase 1.3 Sales Forecasting |
|
|
18 | (1) |
|
Minicase 1.4 Adjusting for Inflation |
|
|
18 | (1) |
|
|
18 | (1) |
|
Chapter 2 Basic Tools for Forecasting |
|
|
19 | (39) |
|
|
20 | (1) |
|
|
20 | (3) |
|
|
21 | (2) |
|
|
23 | (3) |
|
|
24 | (2) |
|
|
26 | (3) |
|
|
29 | (6) |
|
|
29 | (1) |
|
|
30 | (1) |
|
|
31 | (1) |
|
|
32 | (1) |
|
An Example: Hot Growth Companies |
|
|
33 | (2) |
|
|
35 | (3) |
|
|
38 | (3) |
|
Differences and Growth Rates |
|
|
38 | (1) |
|
|
39 | (2) |
|
2.7 How to Measure Forecasting Accuracy |
|
|
41 | (7) |
|
Measures of Forecasting Accuracy |
|
|
42 | (4) |
|
Measures of Absolute Error |
|
|
46 | (2) |
|
|
48 | (3) |
|
Using the Normal Distribution |
|
|
49 | (1) |
|
Empirical Prediction Intervals |
|
|
49 | (1) |
|
Prediction Intervals: Summary |
|
|
50 | (1) |
|
|
51 | (1) |
|
|
52 | (1) |
|
|
52 | (3) |
|
Minicase 2.1 Baseball Salaries |
|
|
55 | (1) |
|
Minicase 2.2 Whither Walmart? |
|
|
56 | (1) |
|
Minicase 2.3 Economic Recessions |
|
|
57 | (1) |
|
|
57 | (1) |
|
Chapter 3 Forecasting Trends: Exponential Smoothing |
|
|
58 | (40) |
|
|
59 | (1) |
|
|
59 | (1) |
|
|
59 | (2) |
|
|
60 | (1) |
|
3.2 Extrapolation Methods |
|
|
61 | (5) |
|
Extrapolation of the Mean Value |
|
|
62 | (2) |
|
|
64 | (2) |
|
3.3 Simple Exponential Smoothing |
|
|
66 | (7) |
|
Forecasting with the EWMA, or Simple Exponential Smoothing |
|
|
68 | (1) |
|
|
69 | (2) |
|
The Use of Hold-Out Samples |
|
|
71 | (1) |
|
|
72 | (1) |
|
3.4 Linear Exponential Smoothing |
|
|
73 | (6) |
|
|
74 | (1) |
|
|
75 | (1) |
|
|
76 | (3) |
|
3.5 Exponential Smoothing with a Damped Trend |
|
|
79 | (2) |
|
|
81 | (1) |
|
3.6 Other Approaches to Trend Forecasting |
|
|
81 | (2) |
|
Brown's Method of Double Exponential Smoothing (DES) |
|
|
81 | (1) |
|
SES with (Constant) Drift |
|
|
82 | (1) |
|
|
82 | (1) |
|
|
82 | (1) |
|
|
83 | (1) |
|
3.8 The Use of Transformations |
|
|
84 | (5) |
|
|
85 | (1) |
|
|
86 | (1) |
|
The Box-Cox Transformations |
|
|
87 | (2) |
|
|
89 | (1) |
|
3.10 Principles for Extrapolative Models |
|
|
90 | (1) |
|
|
91 | (1) |
|
|
91 | (3) |
|
Minicase 3.1 The Growth of Netflix |
|
|
94 | (1) |
|
Minicase 3.2 The Evolution of Walmart |
|
|
94 | (2) |
|
Minicase 3.3 Volatility in the Dow Jones Index |
|
|
96 | (1) |
|
|
96 | (1) |
|
|
97 | (1) |
|
Chapter 4 Seasonal Series: Forecasting and Decomposition |
|
|
98 | (29) |
|
|
99 | (1) |
|
4.1 Components of a Time Series |
|
|
100 | (1) |
|
4.2 Forecasting Purely Seasonal Series |
|
|
101 | (3) |
|
Purely Seasonal Exponential Smoothing |
|
|
103 | (1) |
|
4.3 Forecasting Using a Seasonal Decomposition |
|
|
104 | (4) |
|
|
108 | (2) |
|
4.5* The Census X-12 Decomposition |
|
|
110 | (1) |
|
4.6 The Holt-Winters Seasonal Smoothing Methods |
|
|
111 | (6) |
|
The Additive Holt-Winters Method |
|
|
111 | (1) |
|
|
112 | (5) |
|
4.7 The Multiplicative Holt-Winters Method |
|
|
117 | (1) |
|
|
117 | (1) |
|
Purely Multiplicative Schemes |
|
|
118 | (1) |
|
|
118 | (3) |
|
|
120 | (1) |
|
|
121 | (1) |
|
|
121 | (1) |
|
|
122 | (1) |
|
|
122 | (2) |
|
Minicase 4.1 Walmart Sales |
|
|
124 | (1) |
|
Minicase 4.2 Automobile Production |
|
|
124 | (1) |
|
Minicase 4.3 U.S. Retail Sales |
|
|
124 | (1) |
|
Minicase 4.4 UK Retail Sales |
|
|
125 | (1) |
|
Minicase 4.5 Newspaper Sales |
|
|
125 | (1) |
|
|
126 | (1) |
|
Appendix 4A Excel Macro for Holt-Winters Methods |
|
|
126 | (1) |
|
Chapter 5 State-Space Models for Time Series |
|
|
127 | (24) |
|
|
128 | (1) |
|
5.1 A State-Space Model for Simple Exponential Smoothing |
|
|
128 | (4) |
|
|
130 | (1) |
|
|
131 | (1) |
|
5.2 Prediction Intervals for the Local-Level Model |
|
|
132 | (2) |
|
|
134 | (5) |
|
|
134 | (2) |
|
|
136 | (3) |
|
|
139 | (1) |
|
|
139 | (3) |
|
5.5 State-Space Modeling Principles |
|
|
142 | (1) |
|
|
143 | (1) |
|
|
143 | (1) |
|
Minicase 5.1 Analysis of UK Retail Sales |
|
|
144 | (1) |
|
Minicase 5.2 Prediction Intervals for WFJ Sales |
|
|
145 | (1) |
|
|
145 | (1) |
|
Appendix 5A* Derivation of Forecast Means and Variances |
|
|
145 | (1) |
|
Appendix 5B Pegels' Classification |
|
|
146 | (1) |
|
Appendix 5C* State-Space Models for Other Exponential Smoothing Methods |
|
|
147 | (4) |
|
Chapter 6 Autoregressive Integrated Moving Average (ARIMA) Models |
|
|
151 | (53) |
|
|
152 | (1) |
|
6.1 The Sample Autocorrelation Function |
|
|
152 | (3) |
|
|
154 | (1) |
|
6.2 Autoregressive Moving Average (ARMA) Models |
|
|
155 | (5) |
|
The First-Order Autoregressive Model |
|
|
155 | (2) |
|
Higher Order Autoregressive Models |
|
|
157 | (1) |
|
Pure Moving Average (MA) Models |
|
|
158 | (2) |
|
Mixed Autoregressive Moving Average (ARMA) Models |
|
|
160 | (1) |
|
6.3 Partial Autocorrelations and Model Selection |
|
|
160 | (11) |
|
The Partial Autocorrelation Function (PACF) |
|
|
160 | (4) |
|
|
164 | (1) |
|
|
165 | (2) |
|
|
167 | (4) |
|
6.4 Model Estimation and Selection |
|
|
171 | (7) |
|
Should We Assume Stationarity? |
|
|
173 | (3) |
|
Use of Information Criteria |
|
|
176 | (1) |
|
|
177 | (1) |
|
Formal Tests for Differencing |
|
|
178 | (1) |
|
|
178 | (4) |
|
|
178 | (4) |
|
|
182 | (2) |
|
6.7 Forecasting with ARIMA Models |
|
|
184 | (4) |
|
|
185 | (1) |
|
Forecasting Using Transformations |
|
|
186 | (2) |
|
6.8 Seasonal ARIMA Models |
|
|
188 | (5) |
|
Forecasts for Seasonal Models |
|
|
192 | (1) |
|
6.9* State-Space and ARIMA Models |
|
|
193 | (2) |
|
From ARIMA to a State-Space Form |
|
|
194 | (1) |
|
|
195 | (4) |
|
|
196 | (3) |
|
6.11 Principles of ARIMA Modeling |
|
|
199 | (1) |
|
|
199 | (1) |
|
|
199 | (1) |
|
|
200 | (1) |
|
|
200 | (1) |
|
|
201 | (1) |
|
|
201 | (1) |
|
|
202 | (1) |
|
Appendix 6A* Mean and Variance for AR(1) Scheme |
|
|
202 | (2) |
|
Chapter 7 Simple Linear Regression for Forecasting |
|
|
204 | (37) |
|
|
205 | (1) |
|
7.1 Relationships Between Variables: Correlation and Causation |
|
|
206 | (2) |
|
What Is Regression Analysis? |
|
|
207 | (1) |
|
7.2 Fitting a Regression Line by Ordinary Least Squares (OLS) |
|
|
208 | (5) |
|
The Method of Ordinary Least Squares (OLS) |
|
|
210 | (3) |
|
7.3 A Case Study on the Price of Gasoline |
|
|
213 | (4) |
|
Preliminary Data Analysis |
|
|
214 | (2) |
|
|
216 | (1) |
|
7.4 How Good Is the Fitted Line? |
|
|
217 | (3) |
|
The Standard Error of Estimate |
|
|
218 | (1) |
|
The Coefficient of Determination |
|
|
219 | (1) |
|
7.5 The Statistical Framework for Regression |
|
|
220 | (3) |
|
|
220 | (2) |
|
|
222 | (1) |
|
|
223 | (6) |
|
|
224 | (3) |
|
Interpreting the Slope Coefficient |
|
|
227 | (1) |
|
|
228 | (1) |
|
7.7 Forecasting by Using Simple Linear Regression |
|
|
229 | (5) |
|
|
229 | (1) |
|
|
230 | (2) |
|
An Approximate Prediction Interval |
|
|
232 | (1) |
|
Forecasting More than One Period Ahead |
|
|
232 | (2) |
|
7.8 Forecasting by Using Leading Indicators |
|
|
234 | (1) |
|
|
234 | (1) |
|
|
234 | (2) |
|
Minicase 7.1 Gasoline Prices Revisited |
|
|
236 | (1) |
|
Minicase 7.2 Consumer Confidence and Unemployment |
|
|
236 | (1) |
|
Minicase 7.3 Baseball Salaries Revisited |
|
|
236 | (1) |
|
|
237 | (1) |
|
Appendix 7A Derivation of Ordinary Least Squares Estimators |
|
|
237 | (2) |
|
Appendix 7B Computing P-Values in Excel |
|
|
239 | (1) |
|
Appendix 7C Computing Prediction Intervals |
|
|
240 | (1) |
|
Chapter 8 Multiple Regression for Time Series |
|
|
241 | (28) |
|
|
242 | (1) |
|
8.1 Graphical Analysis and Preliminary Model Development |
|
|
242 | (1) |
|
8.2 The Multiple Regression Model |
|
|
243 | (2) |
|
The Method of Ordinary Least Squares (OLS) |
|
|
244 | (1) |
|
8.3 Testing the Overall Model |
|
|
245 | (4) |
|
The F-test for Multiple Variables |
|
|
246 | (2) |
|
ANOVA in Simple Regression |
|
|
248 | (1) |
|
|
248 | (1) |
|
8.4 Testing Individual Coefficients |
|
|
249 | (4) |
|
Case Study: Baseball Salaries |
|
|
251 | (1) |
|
Testing a Group of Coefficients |
|
|
251 | (2) |
|
8.5 Checking the Assumptions |
|
|
253 | (5) |
|
Analysis of Residuals for Gas Price Data |
|
|
256 | (2) |
|
8.6 Forecasting with Multiple Regression |
|
|
258 | (3) |
|
|
259 | (1) |
|
|
260 | (1) |
|
Forecasting More than One Period Ahead |
|
|
261 | (1) |
|
|
261 | (1) |
|
|
262 | (1) |
|
|
262 | (2) |
|
Minicase 8.1 The Volatility of Google Stock |
|
|
264 | (1) |
|
Minicase 8.2 Economic Factors in Homicide Rates |
|
|
265 | (1) |
|
Minicase 8.3 Forecasting Natural Gas Consumption for the DC Metropolitan Area |
|
|
265 | (1) |
|
Minicase 8.4 Economic Factors in Property Crime |
|
|
266 | (1) |
|
Minicase 8.5 U.S. Retail & Food Service Sales |
|
|
266 | (1) |
|
Minicase 8.6 U.S. Unemployment Rates |
|
|
267 | (1) |
|
|
268 | (1) |
|
Appendix 8A The Durbin-Watson Statistic |
|
|
268 | (1) |
|
|
269 | (41) |
|
|
270 | (1) |
|
9.1 Indicator (Dummy) Variables |
|
|
271 | (7) |
|
|
274 | (4) |
|
9.2 Autoregressive Models |
|
|
278 | (1) |
|
9.3 Models with Both Autoregressive and Regression Components |
|
|
279 | (2) |
|
9.4 Selection of Variables |
|
|
281 | (5) |
|
Forward, Backward, and Stepwise Selection |
|
|
282 | (2) |
|
Searching All Possible Models: Best Subset Regression |
|
|
284 | (1) |
|
Using a Hold-out Sample to Compare Models |
|
|
285 | (1) |
|
A Regression Model with Autoregressive Errors |
|
|
286 | (1) |
|
9.5 Multicollinearity and Structural Change |
|
|
286 | (6) |
|
|
289 | (1) |
|
|
290 | (2) |
|
|
292 | (7) |
|
|
293 | (2) |
|
Nonlinear Transformations |
|
|
295 | (1) |
|
Intrinsically Nonlinear Models |
|
|
296 | (1) |
|
Changing Variances and the Use of Logarithmic Models |
|
|
297 | (2) |
|
9.7 Outliers and Leverage |
|
|
299 | (5) |
|
Leverage Points and What to Do About Them |
|
|
299 | (2) |
|
|
301 | (2) |
|
The Role of Outliers and Leverage Points: A Summary |
|
|
303 | (1) |
|
9.8 Intervention Analysis |
|
|
304 | (1) |
|
9.9 An Update on Forecasting |
|
|
305 | (1) |
|
|
306 | (1) |
|
|
306 | (1) |
|
|
307 | (1) |
|
Minicase 9.1 An Econometric Analysis of Unleaded Gasoline Prices |
|
|
308 | (1) |
|
Minicase 9.2 The Effectiveness of Seat-Belt Legislation |
|
|
308 | (1) |
|
|
309 | (1) |
|
Chapter 10* Advanced Methods of Forecasting |
|
|
310 | |
|
|
311 | (1) |
|
10.1 Predictive Classification |
|
|
311 | (7) |
|
Evaluating the Accuracy of the Predictions |
|
|
314 | (3) |
|
|
317 | (1) |
|
10.2 Classification and Regression Trees |
|
|
318 | (4) |
|
Performance Measures: An Example |
|
|
319 | (1) |
|
Computer Ownership Example Revisited |
|
|
320 | (2) |
|
|
322 | (4) |
|
Issues in Logistic Regression Modeling |
|
|
325 | (1) |
|
10.4 Neural Network Methods |
|
|
326 | (10) |
|
A Cross-Sectional Neural Network Analysis |
|
|
329 | (2) |
|
A Time Series Neural Network Analysis |
|
|
331 | (4) |
|
Neural Networks: A Summary |
|
|
335 | (1) |
|
10.5 Vector Autoregressive (VAR) Models |
|
|
336 | (5) |
|
|
341 | (1) |
|
|
341 | (1) |
|
|
342 | |