Atnaujinkite slapukų nuostatas

El. knyga: Principles of Fourier Analysis

(The University of Alabama in Huntsville, USA)
  • Formatas: 820 pages
  • Serija: Textbooks in Mathematics
  • Išleidimo metai: 12-Dec-2016
  • Leidėjas: CRC Press Inc
  • Kalba: eng
  • ISBN-13: 9781498734134
  • Formatas: 820 pages
  • Serija: Textbooks in Mathematics
  • Išleidimo metai: 12-Dec-2016
  • Leidėjas: CRC Press Inc
  • Kalba: eng
  • ISBN-13: 9781498734134

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

Fourier analysis is one of the most useful and widely employed sets of tools for the engineer, the scientist, and the applied mathematician. As such, students and practitioners in these disciplines need a practical and mathematically solid introduction to its principles. They need straightforward verifications of its results and formulas, and they need clear indications of the limitations of those results and formulas.

Principles of Fourier Analysis furnishes all this and more. It provides a comprehensive overview of the mathematical theory of Fourier analysis, including the development of Fourier series, "classical" Fourier transforms, generalized Fourier transforms and analysis, and the discrete theory. Much of the author's development is strikingly different from typical presentations. His approach to defining the classical Fourier transform results in a much cleaner, more coherent theory that leads naturally to a starting point for the generalized theory. He also introduces a new generalized theory based on the use of Gaussian test functions that yields an even more general -yet simpler -theory than usually presented.

Principles of Fourier Analysis stimulates the appreciation and understanding of the fundamental concepts and serves both beginning students who have seen little or no Fourier analysis as well as the more advanced students who need a deeper understanding. Insightful, non-rigorous derivations motivate much of the material, and thought-provoking examples illustrate what can go wrong when formulas are misused. With clear, engaging exposition, readers develop the ability to intelligently handle the more sophisticated mathematics that Fourier analysis ultimately requires.
Preface xiii
Sample Courses xv
I Preliminaries
1(92)
1 The Starting Point
3(4)
1.1 Fourier's Bold Conjecture
3(2)
1.2 Mathematical Preliminaries and the Following
Chapters
5(2)
Additional Exercises
6(1)
2 Basic Terminology, Notation and Conventions
7(8)
2.1 Numbers
7(1)
2.2 Functions, Formulas and Variables
8(4)
2.3 Operators and Transforms
12(3)
3 Basic Analysis I: Continuity and Smoothness
15(22)
3.1 (Dis)Continuity
15(7)
3.2 Differentiation
22(3)
3.3 Basic Manipulations and Smoothness
25(2)
3.4 Addenda
27(10)
Additional Exercises
34(3)
4 Basic Analysis II: Integration and Infinite Series
37(12)
4.1 Integration
37(4)
4.2 Infinite Series (Summations)
41(8)
Additional Exercises
48(1)
5 Symmetry and Periodicity
49(8)
5.1 Even and Odd Functions
49(2)
5.2 Periodic Functions
51(2)
5.3 Sines and Cosines
53(4)
Additional Exercises
56(1)
6 Elementary Complex Analysis
57(16)
6.1 Complex Numbers
57(2)
6.2 Complex-Valued Functions
59(2)
6.3 The Complex Exponential
61(5)
6.4 Functions of a Complex Variable
66(7)
Additional Exercises
71(2)
7 Functions of Several Variables
73(20)
7.1 Basic Extensions
73(5)
7.2 Single Integrals of Functions with Two Variables
78(4)
7.3 Double Integrals
82(2)
7.4 Addenda: Proving Theorems 7.7 and 7.9
84(9)
Additional Exercises
90(3)
II Fourier Series
93(156)
8 Heuristic Derivation of the Fourier Series Formulas
95(6)
8.1 The Frequencies
95(1)
8.2 The Coefficients
96(3)
8.3 Summary
99(2)
Additional Exercises
100(1)
9 The Trigonometric Fourier Series
101(20)
9.1 Defining the Trigonometric Fourier Series
101(6)
9.2 Computing the Fourier Coefficients
107(8)
9.3 Partial Sums and Graphing
115(6)
Additional Exercises
117(4)
10 Fourier Series over Finite Intervals (Sine and Cosine Series)
121(8)
10.1 The Basic Fourier Series
121(2)
10.2 The Fourier Sine Series
123(2)
10.3 The Fourier Cosine Series
125(1)
10.4 Using These Series
126(3)
Additional Exercises
127(2)
11 Inner Products, Norms and Orthogonality
129(16)
11.1 Inner Products
129(2)
11.2 The Norm of a Function
131(1)
11.3 Orthogonal Sets of Functions
132(2)
11.4 Orthogonal Function Expansions
134(1)
11.5 The Schwarz Inequality for Inner Products
135(2)
11.6 Bessel's Inequality
137(8)
Additional Exercises
141(4)
12 The Complex Exponential Fourier Series
145(10)
12.1 Derivation
145(2)
12.2 Notation and Terminology
147(2)
12.3 Computing the Coefficients
149(1)
12.4 Partial Sums
150(5)
Additional Exercises
151(4)
13 Convergence and Fourier's Conjecture
155(24)
13.1 Pointwise Convergence
155(6)
13.2 Uniform and Nonuniform Approximations
161(8)
13.3 Convergence in Norm
169(4)
13.4 The Sine and Cosine Series
173(6)
Additional Exercises
175(4)
14 Convergence and Fourier's Conjecture: The Proofs
179(22)
14.1 Basic Theorem on Pointwise Convergence
179(7)
14.2 Convergence for a Particular Saw Function
186(9)
14.3 Convergence for Arbitrary Saw Functions
195(1)
14.4 A Divergent Fourier Series
196(5)
15 Derivatives and Integrals of Fourier Series
201(18)
15.1 Differentiation of Fourier Series
201(5)
15.2 Differentiability and Convergence
206(4)
15.3 Integrating Periodic Functions and Fourier Series
210(4)
15.4 Sine and Cosine Series
214(5)
Additional Exercises
216(3)
16 Applications
219(30)
16.1 The Heat How Problem
219(7)
16.2 The Vibrating String Problem
226(8)
16.3 Functions Defined by Infinite Series
234(9)
16.4 Verifying the Heat Flow Problem Solution
243(6)
Additional Exercises
247(2)
III Classical Fourier Transforms
249(260)
17 Heuristic Derivation of the Classical Fourier Transform
251(6)
17.1 Riemann Sums over the Entire Real Line
251(2)
17.2 The Derivation
253(2)
17.3 Summary
255(2)
18 Integrals on Infinite Intervals
257(22)
18.1 Absolutely Integrable Functions
257(4)
18.2 The Set of Absolutely Integrable Functions
261(1)
18.3 Many Useful Facts
261(7)
18.4 Functions with Two Variables
268(11)
Additional Exercises
276(3)
19 The Fourier Integral Transforms
279(18)
19.1 Definitions, Notation and Terminology
279(2)
19.2 Near-Equivalence
281(2)
19.3 Linearity
283(1)
19.4 Invertibility
284(2)
19.5 Other Integral Formulas (A Warning)
286(1)
19.6 Some Properties of the Transformed Functions
287(10)
Additional Exercises
294(3)
20 Classical Fourier Transforms and Classically Transformable Functions
297(22)
20.1 The First Extension
298(4)
20.2 The Set of Classically Transformable Functions
302(2)
20.3 The Complete Classical Fourier Transforms
304(4)
20.4 What Is and Is Not Classically Transformable?
308(2)
20.5 Finite Duration and Finite Bandwidth Functions
310(3)
20.6 More on Terminology, Notation and Conventions
313(6)
Additional Exercises
314(5)
21 Some Elementary Identities: Translation, Scaling and Conjugation
319(20)
21.1 Translation
319(8)
21.2 Scaling
327(1)
21.3 Practical Transform Computing
328(4)
21.4 Complex Conjugation and Related Symmetries
332(7)
Additional Exercises
335(4)
22 Differentiation and Fourier Transforms
339(20)
22.1 The Differentiation Identities
339(7)
22.2 Rigorous Derivation of the Differential Identities
346(3)
22.3 Higher Order Differential Identities
349(2)
22.4 Anti-Differentiation and Integral Identities
351(8)
Additional Exercises
356(3)
23 Gaussians and Gaussian-Like Functions
359(16)
23.1 Basic Gaussians
359(5)
23.2 General Gaussians
364(4)
23.3 Gaussian-Like Functions
368(7)
Additional Exercises
373(2)
24 Convolution and Transforms of Products
375(24)
24.1 Derivation of the Convolution Formula
375(2)
24.2 Basic Formulas and Properties of Convolution
377(2)
24.3 Algebraic Properties
379(3)
24.4 Computing Convolutions
382(6)
24.5 Existence, Smoothness and Derivatives of Convolutions
388(4)
24.6 Convolution and Fourier Analysis
392(7)
Additional Exercises
395(4)
25 Correlation, Square-Integrable Functions and the Fundamental Identity
399(20)
25.1 Correlation
399(4)
25.2 Square-Integrable/Finite Energy Functions
403(9)
25.3 The Fundamental Identity
412(7)
Additional Exercises
416(3)
26 Generalizing the Classical Theory: A Naive Approach
419(28)
26.1 Delta Functions
419(7)
26.2 Transforms of Periodic Functions
426(3)
26.3 Arrays of Delta Functions
429(3)
26.4 The Generalized Derivative
432(15)
Additional Exercises
444(3)
27 Fourier Analysis in the Analysis of Systems
447(16)
27.1 Linear, Shift-Invariant Systems
447(7)
27.2 Computing Outputs for LSI Systems
454(9)
Additional Exercises
461(2)
28 Multi-Dimensional Fourier Transforms
463(8)
28.1 Basic Definitions
463(3)
28.2 Computing Multi-Dimensional Transforms
466(5)
Additional Exercises
470(1)
29 Identity Sequences
471(20)
29.1 An Elementary Identity Sequence
471(2)
29.2 General Identity Sequences
473(4)
29.3 Gaussian Identity Sequences
477(4)
29.4 Verifying Identity Sequences
481(4)
29.5 An Application (with Exercises)
485(2)
29.6 Laplace Transforms as Fourier Transforms
487(4)
Additional Exercises
489(2)
30 Gaussians as Test Functions and Proofs of Important Theorems
491(18)
30.1 Testing for Equality with Gaussians
491(1)
30.2 The Fundamental Theorem on Invertibility
492(3)
30.3 The Fourier Differential Identities
495(6)
30.4 The Fundamental and Convolution Identities of Fourier Analysis
501(8)
IV Generalized Functions and Fourier Transforms
509(198)
31 A Starting Point for the Generalized Theory
511(4)
31.1 Starting Points
511(4)
Additional Exercises
514(1)
32 Gaussian Test Functions
515(22)
32.1 The Space of Gaussian Test Functions
515(4)
32.2 On Using the Space of Gaussian Test Functions
519(2)
32.3 Other Test Function Spaces and a Confession
521(1)
32.4 More on Gaussian Test Functions
522(7)
32.5 Norms and Operational Continuity
529(8)
Additional Exercises
535(2)
33 Generalized Functions
537(30)
33.1 Functionals
537(3)
33.2 Generalized Functions
540(7)
33.3 Basic Algebra of Generalized Functions
547(6)
33.4 Generalized Functions Based on Other Test Function Spaces
553(1)
33.5 Some Consequences of Functional Continuity
553(6)
33.6 The Details of Functional Continuity
559(8)
Additional Exercises
564(3)
34 Sequences and Series of Generalized Functions
567(20)
34.1 Sequences and Limits
567(7)
34.2 Infinite Series (Summations)
574(3)
34.3 A Little More on Delta Functions
577(2)
34.4 Arrays of Delta Functions
579(8)
Additional Exercises
583(4)
35 Basic Transforms of Generalized Fourier Analysis
587(42)
35.1 Fourier Transforms
587(5)
35.2 Generalized Scaling of the Variable
592(5)
35.3 Generalized Translation/Shifting
597(8)
35.4 The Generalized Derivative
605(8)
35.5 Transforms of Limits and Series
613(1)
35.6 Adjoint-Defined Transforms in General
614(7)
35.7 Generalized Complex Conjugation
621(8)
Additional Exercises
623(6)
36 Generalized Products, Convolutions and Definite Integrals
629(20)
36.1 Multiplication and Convolution
630(9)
36.2 Definite Integrals of Generalized Functions
639(4)
36.3 Appendix: On Defining Generalized Products and Convolutions
643(6)
Additional Exercises
646(3)
37 Periodic Functions and Regular Arrays
649(24)
37.1 Periodic Generalized Functions
649(6)
37.2 Fourier Series for Periodic Generalized Functions
655(8)
37.3 On Proving Theorem 37.5
663(10)
Additional Exercises
671(2)
38 Pole Functions and General Solutions to Simple Equations
673(34)
38.1 Basics on Solving Simple Algebraic Equations
674(3)
38.2 Homogeneous Equations with Polynomial Factors
677(12)
38.3 Nonhomogeneous Equations with Polynomial Factors
689(4)
38.4 The Pole Functions
693(7)
38.5 Pole Functions in Transforms, Products and Solutions
700(7)
Additional Exercises
705(2)
V The Discrete Theory
707(54)
39 Periodic, Regular Arrays
709(12)
39.1 The Index Period and Other Basic Notions
709(2)
39.2 Fourier Series and Transforms of Periodic, Regular Arrays
711(10)
Additional Exercises
720(1)
40 Sampling, Discrete Fourier Transforms and FFTs
721(40)
40.1 Some General Conventions and Terminology
721(1)
40.2 Sampling and the Discrete Approximation
722(3)
40.3 The Discrete Approximation and Its Transforms
725(12)
40.4 The Discrete Fourier Transforms
737(4)
40.5 Discrete Transform Identities
741(6)
40.6 Fast Fourier Transforms
747(14)
Additional Exercises
756(5)
Tables, References and Answers
761(22)
Table A.1 Fourier Transforms of Some Common Functions
763(4)
Table A.2 Identities for the Fourier Transforms
767(2)
References
769(2)
Answers to Selected Exercises
771(12)
Index 783
Kenneth Howell is an Associate Professor Emeritus in the Department of Mathematical Sciences of the University of Alabama in Huntsville. He holds a Ph.D. from Indiana University and earned bachelor degrees in both mathematics and physics. Dr. Howell has done extensive work in both academia and in industry. He is also the author of Ordinary Differential Equation: An Introduction to the Fundamentals, also by Chapman & Hall/CRC Press.