Atnaujinkite slapukų nuostatas

El. knyga: Principles of Locally Conformally Kahler Geometry

  • Formatas: PDF+DRM
  • Serija: Progress in Mathematics 354
  • Išleidimo metai: 02-May-2024
  • Leidėjas: Birkhauser Verlag AG
  • Kalba: eng
  • ISBN-13: 9783031581205
  • Formatas: PDF+DRM
  • Serija: Progress in Mathematics 354
  • Išleidimo metai: 02-May-2024
  • Leidėjas: Birkhauser Verlag AG
  • Kalba: eng
  • ISBN-13: 9783031581205

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

This monograph introduces readers to locally conformally Kähler (LCK) geometry and provides an extensive overview of the most current results.  A rapidly developing area in complex geometry dealing with non-Kähler manifolds, LCK geometry has strong links to many other areas of mathematics, including algebraic geometry, topology, and complex analysis.  The authors emphasize these connections to create a unified and rigorous treatment of the subject suitable for both students and researchers.





Part I builds the necessary foundations for those approaching LCK geometry for the first time with full, mostly self-contained proofs and also covers material often omitted from textbooks, such as contact and Sasakian geometry, orbifolds, Ehresmann connections, and foliation theory.  More advanced topics are then treated in Part II, including non-Kähler elliptic surfaces, cohomology of holomorphic vector bundles on Hopf manifolds, Kuranishi and Teichmüller spaces for LCK manifolds with potential, and harmonic forms on Sasakian and Vaisman manifolds.  Each chapter in Parts I and II begins with motivation and historic context for the topics explored and includes numerous exercises for further exploration of important topics.





Part III surveys the current research on LCK geometry, describing advances on topics such as automorphism groups on LCK manifolds, twisted Hamiltonian actions and LCK reduction, Einstein-Weyl manifolds and the Futaki invariant, and LCK geometry on nilmanifolds and on solvmanifolds.  New proofs of many results are given using the methods developed earlier in the text.  The text then concludes with a chapter that gathers over 100 open problems, with context and remarks provided where possible, to inspire future research.  
Introduction.- Part I: Lectures in locally conformally Kähler geometry.-
Kähler manifolds.- Connections in vector bundles and the Froebenius theorem.-
Locally conformally Kahler manifolds.- Hodge theory on complex manifolds and
Vaisman's theorem.- Holomorphic vector bundles.- CR, Contact and Sasakian
manifolds.- Vaisman manifolds.- The structure of compact Vaisman manifolds.-
Orbifolds.- Quasi-regular foliations.- Regular and quasi-regular Vaisman
manifolds.- LCK manifolds with potential.- Embedding LCK manifolds with
potential in Hopf manifolds.- Logarithms and algebraic cones.- Pseudoconvex
shells and LCK metrics on Hopf manifolds.- Embedding theorem for Vaisman
manifolds.- Non-linear Hopf manifolds.- Morse-Novikov and Bott-Chern
cohomology of LCK manifolds.- Existence of positive potentials.- Holomorphic
S^1 actions on LCK manifolds.- Sasakian submanifolds in algebraic cones.-
Oeljeklaus-Toma manifolds.- Appendices.- Part II: Advanced LCK geometry.-
Non-Kähler elliptic surfaces.- Kodaira classification for non-Kähler complex
surfaces.- Cohomology of holomorphic bundles on Hopf manifolds.- Mall bundles
and flat connections on Hopf manifolds.- Kuranishi and Teichmüller spaces for
LCK manifolds with potential.- The set of Lee classes on LCK manifolds with
potential.- Harmonic forms on Sasakian and Vaisman manifolds.- Dolbeault
cohomology of LCK manifolds with potential.- Calabi-Yau theorem for Vaisman
manifolds.- Holomorphic tensor fields on LCK manifolds with potential.- Part
III: Topics in locally conformally Kähler geometry.- Twisted Hamiltonian
actions and LCK reduction.- Elliptic curves on Vaisman manifolds.-
Submersions and bimeromorphic maps of LCK manifolds.- Bott-Chern cohomology
of LCK manifolds with potential.- Hopf surfaces in LCK manifolds with
potential.- Riemannian geometry of LCK manifolds.- Einstein-Weyl manifolds
and the Futaki invariant.- LCK structures on homogeneous manifolds.- LCK
structures on nilmanifolds and solvmanifolds.- Explicit LCK metrics on Inoue
surfaces.- More on Oeljeklaus-Toma manifolds.- Locally conformally parallel
and non-parallel structures.- Open questions.