Atnaujinkite slapukų nuostatas

El. knyga: Principles of Noology: Toward a Theory and Science of Intelligence

  • Formatas: PDF+DRM
  • Serija: Socio-Affective Computing 3
  • Išleidimo metai: 29-Jun-2016
  • Leidėjas: Springer International Publishing AG
  • Kalba: eng
  • ISBN-13: 9783319321134
Kitos knygos pagal šią temą:
  • Formatas: PDF+DRM
  • Serija: Socio-Affective Computing 3
  • Išleidimo metai: 29-Jun-2016
  • Leidėjas: Springer International Publishing AG
  • Kalba: eng
  • ISBN-13: 9783319321134
Kitos knygos pagal šią temą:

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

The idea of this book is to establish a new scientific discipline, noology, under which a set of fundamental principles are proposed for the characterization of both naturally occurring and artificial intelligent systems. The methodology adopted in Principles of Noology for the characterization of intelligent systems, or noological systems, is a computational one, much like that of AI. Many AI devices such as predicate logic representations, search mechanisms, heuristics, and computational learning mechanisms are employed but they are recast in a totally new framework for the characterization of noological systems. The computational approach in this book provides a quantitative and high resolution understanding of noological processes, and at the same time the principles and methodologies formulated are directly implementable in AI systems.





In contrast to traditional AI that ignores motivational and affective processes, under the paradigm of noology,motivational and affective processes are central to the functioning of noological systems and their roles in noological processes are elucidated in detailed computational terms. In addition, a number of novel representational and learning mechanisms are proposed, and ample examples and computer simulations are provided to show their applications. These include rapid effective causal learning (a novel learning mechanism that allows an AI/noological system to learn causality with a small number of training instances), learning of scripts that enables knowledge chunking and rapid problem solving, and learning of heuristics that further accelerates problem solving. Semantic grounding allows an AI/noological system to truly understand the meaning of the knowledge it encodes. This issue is extensively explored.





This is a highly informative book providing novel and deep insights into intelligent systems which is particularly relevant to both researchers and students of AI and the cognitive sciences.
Preface.- Acknowledgement.- Introduction.- Rapid Unsupervised Effective
Causal Learning.- A General Noological Framework.- Conceptual Grounding and
Operational Representation.- Causal Rules, Problem Solving, and Operational
Representation.- The Causal Role of Sensory Information.- Application to the
StarCraft Game Environment.- A Grand Challenge for Noology and Computational
Intelligence.- Affect Driven Noological Processes.- Summary and Beyond.-
Appendix A: Causal vs Reinforcement Learning.- Appendix B: Rapid Effective
Causal Learning Algorithm.- Index.