Atnaujinkite slapukų nuostatas

El. knyga: Printed Electronics: Materials, Technologies and Applications

(Cambridge University, UK)
  • Formatas: PDF+DRM
  • Išleidimo metai: 12-Apr-2016
  • Leidėjas: John Wiley & Sons Inc
  • Kalba: eng
  • ISBN-13: 9781118920930
Kitos knygos pagal šią temą:
  • Formatas: PDF+DRM
  • Išleidimo metai: 12-Apr-2016
  • Leidėjas: John Wiley & Sons Inc
  • Kalba: eng
  • ISBN-13: 9781118920930
Kitos knygos pagal šią temą:

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

This book provides an overview of the newly emerged and highly interdisciplinary field of printed electronics

• Provides an overview of the latest developments and research results in the field of printed electronics
• Topics addressed include: organic printable electronic materials, inorganic printable electronic materials, printing processes and equipments for electronic manufacturing, printable transistors, printable photovoltaic devices, printable lighting and display, encapsulation and packaging of printed electronic devices, and applications of printed electronics
• Discusses the principles of the above topics, with support of examples and graphic illustrations
• Serves both as an advanced introductory to the topic and as an aid for professional development into the new field
• Includes end of chapter references and links to further reading
Preface xii
1 Introduction 1(20)
Zheng Cui
1.1 What is Printed Electronics?
1(10)
1.2 The Importance of Developing Printed Electronics
11(4)
1.3 Multidisciplinary Nature of Printed Electronics
15(2)
1.4 Structure and Content of the Book
17(2)
References
19(2)
2 Organic Printable Electronic Materials 21(33)
Song Qiu
Chunshan Zhou
2.1 Introduction
21(1)
2.2 Organic Conductive Materials
22(5)
2.2.1 Characteristics of Organic Conductive Materials
22(1)
2.2.2 History of Organic Conductive Materials
23(1)
2.2.3 Conductive Polymer
23(2)
2.2.3.1 Structural Conductive Polymer
23(2)
2.2.3.2 Composite Conductive Polymer
25(1)
2.2.4 PEDOT
25(2)
2.3 Printable Organic Small Molecular Semiconductors
27(7)
2.3.1 Fused Aromatic Compounds
28(2)
2.3.2 Heterocyclic Sulfur Compounds and Oligothiophenes
30(3)
2.3.3 Other Materials with High Mobility
33(1)
2.4 Printable Polymeric Semiconductor
34(10)
2.4.1 P-type Polymer Semiconductors
35(4)
2.4.1.1 Sulfur-containing Heterocyclic Polymeric Semiconductors
35(2)
2.4.1.2 Phenyl-containing Polymeric Semiconductors
37(2)
2.4.1.3 Other p-type Polymeric Semiconductors
39(1)
2.4.2 N-type Polymer Semiconductors
39(2)
2.4.3 Ambipolar Transistor and Related Polymer Materials
41(2)
2.4.4 Outlook
43(1)
2.5 Other Printable Organic Electronic Materials
44(5)
2.5.1 Organic Insulating Materials
44(3)
2.5.2 Organic Materials for Sensors
47(2)
2.6 Summary
49(1)
References
49(5)
3 Inorganic Printable Electronic Materials 54(52)
Zheng Chen
3.1 Introduction
54(2)
3.2 Metallic Materials
56(10)
3.2.1 Metallic Ink
56(7)
3.2.2 Post-printing Process
63(1)
3.2.3 Metal Nanowire
64(2)
3.3 Transparent Oxide
66(6)
3.3.1 Transparent Oxide Semiconductor and Conductor
66(2)
3.3.2 Low Temperature Solution Processing
68(3)
3.3.3 Doped Transparent Oxide Nanoparticles
71(1)
3.4 Single-wall Carbon Nanotube
72(11)
3.4.1 Preparation and Selective Chemistry of SWNT
72(4)
3.4.2 Purification of SWNT
76(1)
3.4.3 Metallic SWNT Thin Film
77(2)
3.4.4 Semiconducting SWNT Thin Film
79(4)
3.5 Graphene
83(3)
3.6 Silicon and Germanium
86(4)
3.7 Metal Chalcogenides Semiconductor and Quantum Dots
90(2)
3.7.1 Metal Chalcogenides Semiconductor
90(1)
3.7.2 Quantum Dots
90(2)
3.8 Nanoparticle/Polymer Dielectric Composites
92(3)
3.9 Summary
95(1)
References
96(10)
4 Printing Processes and Equipments 106(39)
Jian Lin
4.1 Introduction
106(2)
4.2 Jet Printing
108(7)
4.2.1 Inkjet Printing
108(3)
4.2.1.1 Working Principles
108(1)
4.2.1.2 Pattern Preparation
108(2)
4.2.1.3 Application in Printed Electronics
110(1)
4.2.2 Aerosol Jet Printing
111(3)
4.2.2.1 Working Principle
112(1)
4.2.2.2 Pattern Preparation
112(1)
4.2.2.3 Advantages and Challenges
113(1)
4.2.3 Electrohydrodynamic Jet Printing
114(1)
4.2.4 Advantages and Disadvantages
114(1)
4.3 Direct Replicate Printing
115(10)
4.3.1 Screen Printing
116(2)
4.3.1.1 Working Principle
116(1)
4.3.1.2 Screen Mask
117(1)
4.3.1.3 Advantages and Disadvantages
118(1)
4.3.1.4 Applications
118(1)
4.3.2 Gravure Printing
118(4)
4.3.2.1 Principle and System
118(2)
4.3.2.2 Gravure Plate
120(1)
4.3.2.3 Advantages and Disadvantages
120(1)
4.3.2.4 Applications in Printed Electronics
121(1)
4.3.3 Flexographic Printing
122(3)
4.3.3.1 Principle and System
122(1)
4.3.3.2 Printing Plate
123(1)
4.3.3.3 Advantages and Disadvantages
123(2)
4.3.3.4 Applications in Printed Electronics
125(1)
4.4 Indirect Replicate Printing
125(4)
4.4.1 Offset Printing
125(1)
4.4.2 Gravure Offset Printing
126(2)
4.4.3 Pad Printing
128(1)
4.5 Pre-printing Processes
129(5)
4.5.1 Pattern Design
129(1)
4.5.2 Modification of Surface Energy
130(1)
4.5.3 Surface Coating
131(1)
4.5.4 Embossing and Nanoimprinting
131(3)
4.6 Post-printing Processes
134(2)
4.6.1 Sintering
134(1)
4.6.2 UV Curing
135(1)
4.6.3 Annealing
135(1)
4.7 Summary
136(1)
References
137(8)
5 Printed Thin Film Transistors 145(56)
Jianwen Zhao
5.1 Introduction
145(1)
5.2 Types of Transistors
146(1)
5.3 Working Principles of Transistors
147(10)
5.3.1 Basic Mechanism of MOSFETs
147(2)
5.3.2 Charge Carriers and Carrier Mobility
149(1)
5.3.3 Basic Parameters of TFT
149(8)
5.3.3.1 Effective Mobility
149(2)
5.3.3.2 Operating Voltage
151(1)
5.3.3.3 Device Capacitance
151(2)
5.3.3.4 Threshold Voltage (Vt)
153(2)
5.3.3.5 Subthreshold Swing (SS)
155(1)
5.3.3.6 On/off Current Ratio (Ion/Ioff)
155(1)
5.3.3.7 Hysteresis
156(1)
5.3.3.8 Transconductance (gm)
157(1)
5.3.3.9 Stability
157(1)
5.4 Structures and Fabrication of TFTs
157(15)
5.4.1 Structures of TFTs
157(2)
5.4.2 Characteristics of TFTs
159(1)
5.4.3 Fabrication of TFTs
160(12)
5.4.3.1 Fabrication of Electrodes
160(3)
5.4.3.2 Fabrication of Active Layer
163(4)
5.4.3.3 Fabrication of Dielectric Layers
167(5)
5.5 Fully Printed TFTs
172(8)
5.5.1 Printability of Electronic Materials
172(1)
5.5.2 Influence of Surface Morphology
173(1)
5.5.3 Interface Effect of Printed TFTs
173(5)
5.5.3.1 Effect of Semiconductor/Dielectric Interface
175(1)
5.5.3.2 Effect of Semiconductor/Semiconductor Interface
176(1)
5.5.3.3 Effect of Semiconductor/Electrode Interface
177(1)
5.5.4 Effect of Channel Length
178(1)
5.5.5 Summary of Issues in Printing TFTs
179(1)
5.5.5.1 Printable Inks and Printing Processes
179(1)
5.5.5.2 Printed Electrodes
180(1)
5.5.5.3 Printed Dielectric Thin Films
180(1)
5.6 Advances in Printed TFTs
180(9)
5.6.1 Printed Inorganic TFTs
181(6)
5.6.1.1 SWCNT TFTs
181(1)
5.6.1.2 Metal Oxide TFTs
182(2)
5.6.1.3 Metal Dichalcogenide and Graphene TFTs
184(3)
5.6.2 Printed Organic TFTs
187(2)
5.7 Basics of Printed Logic Circuits
189(7)
5.7.1 NAND and NOR Gates
190(1)
5.7.2 Inverter
190(1)
5.7.3 Ring Oscillator
190(3)
5.7.4 Flip-flop
193(1)
5.7.5 Backplane Driving Circuits for Display
194(2)
5.8 Summary
196(1)
References
197(4)
6 Printed Organic Thin Film Solar Cells 201(50)
Changqi Ma
6.1 Introduction
201(4)
6.1.1 Solar Energy and its Utilization
201(1)
6.1.2 Classification of Solar Cells
202(1)
6.1.3 A Brief History of Organic Thin-Film Solar Cells
203(2)
6.2 Working Principles and Characterization of Organic Solar Cells
205(8)
6.2.1 Physical Processes
205(1)
6.2.2 Basic Structure
206(2)
6.2.3 Characterization
208(1)
6.2.3.1 I-V Characteristics
208(1)
6.2.3.2 Spectrum Response
209(1)
6.2.4 The Main Factors Influencing Device Performance
209(4)
6.2.4.1 Photon Absorption Ability of Organic Semiconductors
210(1)
6.2.4.2 Energy Level Arrangement of Donor and Acceptor
210(2)
6.2.4.3 Morphology of Photoactive Layer
212(1)
6.3 Materials for Organic Solar Cells
213(16)
6.3.1 Transparent Substrate
214(1)
6.3.2 Transparent Conductive Electrode
214(4)
6.3.2.1 Metal Oxide Film
214(1)
6.3.2.2 Conductive Polymer Film
215(1)
6.3.2.3 Thin Metal Film and Metal Grid
215(2)
6.3.2.4 Carbon-rich Materials
217(1)
6.3.3 Organic Semiconductor Materials
218(9)
6.3.3.1 p-Type Organic Semiconductors
218(5)
6.3.3.2 n-Type Organic Semiconductors
223(4)
6.3.4 Inorganic Semiconductors
227(2)
6.3.5 Other Functional Materials
229(1)
6.4 Inverted and Tandem Organic Solar Cells
229(3)
6.4.1 Inverted Organic Solar Cells
229(2)
6.4.2 Tandem Organic Solar Cells
231(1)
6.4.3 Inverted Tandem Organic Solar Cells
231(1)
6.5 Fabrication Methods
232(5)
6.5.1 Spin Coating
233(2)
6.5.2 Doctor Blading
235(1)
6.5.3 Screen Printing
235(2)
6.5.4 Inkjet Printing
237(1)
6.5.5 Other Thin Film Deposition Techniques
237(1)
6.6 Roll-to-roll Processing
237(2)
6.7 Printable Perovskite Solar Cells
239(1)
6.8 Summary and Outlook
239(1)
References
240(11)
7 Printed Organic Light Emission and Display 251(36)
Wenming Su
7.1 Introduction
251(3)
7.1.1 Overview of Lighting and Display
252(1)
7.1.2 Overview of Organic Light Emitting Diodes (OLEDs)
253(1)
7.2 Mechanism of Organic Light Emission
254(5)
7.2.1 Charge Injection and Transport
255(1)
7.2.2 Exciton Formation and Light Emission
256(1)
7.2.3 Characterization of OLED Performance
256(3)
7.2.3.1 Luminous Efficacy
256(1)
7.2.3.2 Quantum Efficiency
257(1)
7.2.3.3 Color
257(1)
7.2.3.4 Three Primary Colors
258(1)
7.3 Structures and Materials of OLED
259(8)
7.3.1 Small Molecular OLED
259(3)
7.3.1.1 Typical Structure
259(1)
7.3.1.2 Electrode Materials
259(1)
7.3.1.3 Fabrication Process
260(2)
7.3.2 Polymer OLEDs
262(1)
7.3.3 General OLED Materials
262(3)
7.3.3.1 Charge Injection Materials
263(1)
7.3.3.2 Charge Transport Materials
263(1)
7.3.3.3 Emitter Materials
264(1)
7.3.4 Soluble OLED Materials
265(2)
7.3.4.1 Printable Polymer OLEDs
266(1)
7.3.4.2 Printable Small Molecular OLEDs
266(1)
7.3.4.3 Cross-linking Materials for Printable OLEDs
267(1)
7.4 White Lighting OLEDs
267(10)
7.4.1 White Light Emission Mechanism
267(5)
7.4.2 Important Parameters
272(3)
7.4.2.1 CRI
272(1)
7.4.2.2 Efficiency and Light Extraction
273(2)
7.4.2.3 Lifetime
275(1)
7.4.3 Investment in OLED Lighting
275(2)
7.5 Fabrication of OLED by Printing
277(4)
7.5.1 Spin and Slot Die Coating
277(1)
7.5.2 Inkjet Printing
278(1)
7.5.3 Screen Printing
278(1)
7.5.4 Roll-to-roll Printing
279(1)
7.5.5 Current Status of the Printed OLED Industry
280(1)
7.6 Summary
281(1)
References
282(5)
8 Encapsulation Technology for Organic Electronic Devices 287(29)
Wenming Su
8.1 Introduction
287(1)
8.2 Aging of Organic Electronic Devices
288(3)
8.2.1 Characteristics and Mechanisms of Aging
288(2)
8.2.2 Requirements for Organic Electronics Encapsulation
290(1)
8.3 Principle of Encapsulation
291(5)
8.3.1 Water/oxygen Penetration Mechanism through Thin Films
291(1)
8.3.2 Organic/inorganic Multilayer Encapsulation
292(1)
8.3.3 Measurement of Encapsulation Property
293(3)
8.4 Thin-film Encapsulation Technology
296(11)
8.4.1 History of Thin-film Encapsulation
297(1)
8.4.2 Single Layer Thin-film Encapsulation
298(1)
8.4.3 Multilayer Thin-film Encapsulation
298(2)
8.4.4 Barix™ Thin-film Encapsulation
300(1)
8.4.5 Thin Film Deposition Methods
301(3)
8.4.5.1 PECVD
301(2)
8.4.5.2 ALD
303(1)
8.4.5.3 Parylene Deposition
303(1)
8.4.6 Flexibility of Encapsulation Thin Film
304(2)
8.4.7 Trends of Thin-film Encapsulation
306(1)
8.5 Applications of Thin-film Encapsulation
307(6)
8.5.1 Encapsulation of Flexible OLED
307(2)
8.5.2 Encapsulation of Flexible OPV
309(4)
8.6 Summary
313(1)
References
314(2)
9 Applications and Future Prospects of Printed Electronics 316(23)
Zheng Cui
9.1 Introduction
316(1)
9.2 Application Areas of Printed Electronics
317(16)
9.2.1 Organic Photovoltaic
317(4)
9.2.2 Flexible Display
321(3)
9.2.3 Organic Lighting
324(2)
9.2.4 Electronics and Components
326(5)
9.2.5 Integrated Smart Systems
331(2)
9.3 Challenges for Printed Electronics
333(3)
9.3.1 Materials
333(2)
9.3.2 Printing Process and Equipment
335(1)
9.3.3 Encapsulation
335(1)
9.3.4 Design Methodology and Standardization
336(1)
9.4 Summary and Outlook
336(1)
References
337(2)
Index 339
Prof Zheng Cui, Chinese Academy of Sciences, China Zheng Cui obtained a PhD in electronic engineering in 1988 and became a Visiting Fellow at the Microelectronics Research Center, Cambridge University, UK, in 1989. Cui joined the Rutherford Appleton Laboratory, UK, in 1993 and subsequently became a Principal Scientist and group leader there in 1999. In October 2009, after working in the UK for 20 years, Cui returned to China and founded the Printable Electronics Research Center at the Suzhou Institute of Nanotech, which was the first research center dedicated to printed electronics R&D in China.

CONTRIBUTORS

Dr Song Qiu, Chinese Academy of Sciences, China Song Qiu received a B.S. Polymer Materials and Engineering in 2000, followed by a PhD in Polymer Chemistry and Physics?from Jilin University in 2005.

Dr Jian Lin, Chinese Academy of Sciences, China Jian Lin received his PhD degree in Polymer Chemistry and Physics from Changchun Institute of Applied Chemistry, Chinese Academy of Sciences in 2008.

Dr. Jianwen Zhao, Chinese Academy of Sciences, China Jianwen Zhao received his PhD degree in Technical Institute of Physics and Chemistry, Chinese Academic of Science, in 2008.

Dr. Chang-Qi Ma, Chinese Academy of Sciences, China Chang-Qi Ma received his bachelor's degree in Chemistry from Beijing Normal University in 1998. In 2003 he obtained his PhD degree at the Technical Institute of Physics and Chemistry, Chinese Academy of Sciences in Beijing with Professor B.-W. Zhang.

Dr. Zheng Chen, Chinese Academy of Sciences, China Zheng Chen received the B.S. degree in materials physics and PhD degree in condensed matter physics from the University of Science and Technology of China, in 2002 and 2007, respectively.

Dr. Wenming Su, Chinese Academy of Sciences, China Wenming Su is anAssociate professor of Printable Electronics Research Center, Suzhou Institute of Nanotech, Chinese Academy of Sciences.