Atnaujinkite slapukų nuostatas

El. knyga: Probability Tales

  • Formatas: 237 pages
  • Serija: Student Mathematical Library
  • Išleidimo metai: 30-Jul-2011
  • Leidėjas: American Mathematical Society
  • ISBN-13: 9781470416409
Kitos knygos pagal šią temą:
  • Formatas: 237 pages
  • Serija: Student Mathematical Library
  • Išleidimo metai: 30-Jul-2011
  • Leidėjas: American Mathematical Society
  • ISBN-13: 9781470416409
Kitos knygos pagal šią temą:

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

This book explores four real-world topics through the lens of probability theory. It can be used to supplement a standard text in probability or statistics. Most elementary textbooks present the basic theory and then illustrate the ideas with some neatly packaged examples. Here the authors assume that the reader has seen, or is learning, the basic theory from another book and concentrate in some depth on the following topics: streaks, the stock market, lotteries, and fingerprints. This extended format allows the authors to present multiple approaches to problems and to pursue promising side discussions in ways that would not be possible in a book constrained to cover a fixed set of topics. To keep the main narrative accessible, the authors have placed the more technical mathematical details in appendices. The appendices can be understood by someone who has taken one or two semesters of calculus.
Preface vii
Chapter 1 Streaks
1(96)
§1 Introduction
1(3)
§2 Models for Repeated Trials
4(2)
§3 Runs in Repeated Trials
6(3)
§4 Statistical Tests on Repeated Trials
9(15)
§5 Data from Various Sports
24(47)
§6 Runs in the Stock Market
71(8)
§7 Appendix
79(18)
Chapter 2 Modeling the Stock Market
97(52)
§1 Stock Prices
97(6)
§2 Variations in the Price of a Stock
103(3)
§3 The Normal Distribution and Power Laws
106(8)
§4 Distribution of Returns
114(14)
§5 Independence of Returns
128(8)
§6 Is the Power Law Exponent Intrinsic?
136(3)
§7 Appendix
139(10)
Chapter 3 Lotteries
149(42)
§1 Rules of the Powerball Lottery
149(3)
§2 Calculating the Probabilities of Winning
152(5)
§3 What is Your Expected Winning for a $1 Ticket?
157(8)
§4 Does a Ticket's Expected Value Ever Exceed $1?
165(3)
§5 What Kind of Numbers Do Lottery Buyers Choose?
168(5)
§6 Finding Patterns
173(6)
§7 How Often is the Jackpot Won?
179(2)
§8 Other Lotteries Pose New Questions
181(1)
§9 Using Lottery Stories to Discuss Coincidences
182(2)
§10 Lottery Systems
184(1)
§11 Lottery Stories from Chance News
185(4)
§12 Lottery Questions from John Haigh
189(2)
Chapter 4 Fingerprints
191(34)
§1 Introduction
191(1)
§2 History of Fingerprinting
191(7)
§3 Models of Fingerprints
198(5)
§4 Latent Fingerprints
203(14)
§5 The 50K Study
217(8)
Answers to John Haigh's Lottery Questions 225(6)
Bibliography 231(4)
Index 235