Atnaujinkite slapukų nuostatas

El. knyga: On the Problem of Infinite Spin in Total Collisions of the Planar $N$-Body Problem

Kitos knygos pagal šią temą:
Kitos knygos pagal šią temą:

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

"For the planar N-body problem, we introduce a class of moving coordinates suitable for orbits near central configurations, especially for total collision orbits, which is the main new ingredient of this paper. The moving coordinates allow us to reduce the degeneracy of the N-Body problem from its intrinsic symmetrical characteristic. First, we give a full answer to the infinite spin or Painleve-Wintner problem in the case corresponding to nondegenerate central configurations. Then following some original ideas of C.L. Siegel, especially the idea of normal forms, and applying the theory of central manifolds, we give a partial answer to the problem in the case corresponding to degenerate central configurations. We completely answer the problem in the casecorresponding to central configurations with degree of degeneracy one. Combining some results on the planar nonhyperbolic equilibrium point, we give a criterion in the case corresponding to central configurations with degree of degeneracy two. We furtheranswer the problem in the case corresponding to all known central configurations of four bodies. Therefore, we solve the problem for almost every choice of the masses of the four-body problem. Finally, we give a measure of the set of initial conditions leading to total collisions"-- Provided by publisher.
Chapters
1. Introduction
2. Preliminaries
3. Equations of Motion for Collision Orbits and $PISPW$
4. Resolving $PISPW$
5. Manifold of Collision Orbits
6. Conclusion and Questions
A. Degeneracy of Central Configurations
B. Central Configurations of Four Bodies
C. Diagonalization of the Linear Part
D. Normal Forms
E. Plane Equilibrium Points
Xiang Yu, Tianjin University, People's Republic of China, and Southwestern University of Finance and Economics, Chengdu, People's Republic of China.