Atnaujinkite slapukų nuostatas

El. knyga: Proceedings of International Conference on Image, Vision and Intelligent Systems 2023 (ICIVIS 2023)

Edited by , Edited by , Edited by

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

This book constitutes the refereed proceedings of ICIVIS2023, held in Baoding, China, in August 2023. The papers included in the proceedings have been carefully reviewed and selected from the submitted manuscripts in the areas of image, vision and intelligent systems.
 
This book provides a reference for theoretical innovative problems as well as recent practical solutions and applications for the state-of-the-art results in image, vision and intelligent systems. The intended audience of the book includes researchers, professors, experts, practitioners and professionals in the field of image, vision and intelligent systems worldwide.
High Order Conditional Random Field based Cervical Cancer
Histopathological Image Classification.- Skin Cancer Image Identification
Using Deep Convolutional Neural Networks.- Deep Learning-based Prediction of
Myelosuppression in Lymphoma Patients during Chemotherapy Using Multimodal
Radiological Images with Subcutaneous Adipose Tissue.- Retrievable Image
Encryption Based on Adaptive Block Compressed Sensing.- Research on Prostate
Cancer Pathological Image Classification Method based on Vision
Transformer.- Multi-Disease Detection and Segmentation of Chest CT Images
Based on Coarse-to-Fine Pipeline Models.- Dual Branch Image-guided Network
with Multi-stage Iterative Refinement for Depth Completion.- CT images
super-resolution reconstruction Using Bi-Level Routing Attention and
Consecutive Dilated Convolutions.- ASPCD-UNet: An improved network for change
detection.- SE-UNet: Channel Attention based UNet for Water body 
Segmentation from SAR Image.