Atnaujinkite slapukų nuostatas

Processes and Design for Manufacturing, Third Edition 3rd edition [Kietas viršelis]

(University of Massachusetts Dartmouth)
  • Formatas: Hardback, 521 pages, aukštis x plotis: 254x178 mm, weight: 1179 g, 33 Tables, black and white; 411 Line drawings, black and white; 5 Halftones, color; 9 Halftones, black and white; 5 Illustrations, color; 420 Illustrations, black and white
  • Išleidimo metai: 12-Apr-2019
  • Leidėjas: CRC Press
  • ISBN-10: 1138581089
  • ISBN-13: 9781138581081
Kitos knygos pagal šią temą:
  • Formatas: Hardback, 521 pages, aukštis x plotis: 254x178 mm, weight: 1179 g, 33 Tables, black and white; 411 Line drawings, black and white; 5 Halftones, color; 9 Halftones, black and white; 5 Illustrations, color; 420 Illustrations, black and white
  • Išleidimo metai: 12-Apr-2019
  • Leidėjas: CRC Press
  • ISBN-10: 1138581089
  • ISBN-13: 9781138581081
Kitos knygos pagal šią temą:

Processes and Design for Manufacturing, Third Edition, examines manufacturing processes from the viewpoint of the product designer, investigating the selection of manufacturing methods in the early phases of design and how this affects the constructional features of a product. The stages from design process to product development are examined, integrating an evaluation of cost factors. The text emphasizes both a general design orientation and a systems approach and covers topics such as additive manufacturing, concurrent engineering, polymeric and composite materials, cost estimation, design for assembly, and environmental factors. Appendices with materials engineering data are also included.

Preface to the Third Edition xxv
Acknowledgments xxvii
Author xxix
Chapter 1 Overview
1(18)
1.1 Introduction
1(11)
1.1.1 Definition of Manufacturing
1(1)
1.1.2 Relationship between Manufacturing and Standard of Living
1(1)
1.1.3 Overview of the Manufacturing Processes
2(1)
1.1.4 Types of Production
2(1)
1.1.4.1 Mass Production
2(1)
1.1.4.2 Job Shop Production
2(1)
1.1.4.3 Moderate Production
2(1)
1.1.5 Fundamentals of Manufacturing Accuracy
3(1)
1.1.5.1 Tolerances
3(1)
1.1.5.2 Fits
3(1)
1.1.5.3 Interchangeability and Standardization
4(1)
1.1.6 The Production Turn
5(1)
1.1.7 Product Life Cycle
6(1)
1.1.8 Technology Development Cycle
7(2)
1.1.9 The Design Process
9(1)
1.1.9.1 Problem Formulation
9(1)
1.1.9.2 Problem Analysis
9(1)
1.1.9.3 Search for Alternative Solutions
10(1)
1.1.9.4 Decision Making
11(1)
1.1.9.5 Documentation
11(1)
1.2 Product Design
12(7)
1.2.1 Listening to the User (Quality Function Deployment)
12(1)
1.2.2 Conditions to Which the Product Would Be Subjected during Its Service Life
13(1)
1.2.3 Cost
13(1)
1.2.4 The Concept of Design for Manufacturing
13(1)
1.2.5 Ergonomics and Industrial Design
14(1)
1.2.6 Periodic Cleaning and Maintenance
15(1)
1.2.7 Sustainability and Environmental Issues
15(1)
1.2.8 Design for Disassembly
16(1)
1.2.9 Material Selection
16(1)
1.2.10 Fastening and Joining Considerations
16(1)
1.2.11 Design for Assembly for Multicomponent Products
17(1)
1.2.12 Legal and Ethical Issues
17(1)
Review Questions
18(1)
Chapter 2 Product Cost Estimation
19(12)
2.1 Introduction
19(1)
2.2 Costs: Classification and Terminology
19(2)
2.3 Labor Cost Analysis
21(3)
2.3.1 Methods for Measurement of Time
21(1)
2.3.2 The Learning Curve
22(1)
2.3.3 Labor Laws
23(1)
2.4 Material Cost Analysis
24(1)
2.4.1 Amount of Material Used
24(1)
2.4.2 Purchasing Price of Material
24(1)
2.4.2.1 First-in-First-out Method
25(1)
2.4.2.2 Last-in-First-out Method
25(1)
2.4.2.3 Current-Cost Method
25(1)
2.4.2.4 Actual-Price Method
25(1)
2.5 Equipment Cost Analysis
25(2)
2.5.1 Cost Indexing
26(1)
2.5.2 Size Effect
26(1)
2.5.3 Regression Analysis
26(1)
2.6 Engineering Cost
27(1)
2.7 Overhead Cost
27(1)
2.7.1 Factory Overheads
27(1)
2.7.2 Corporate Overheads
28(1)
2.8 Design to Cost
28(3)
Review Questions
28(2)
Design Project
30(1)
Chapter 3 Casting and Foundry Work
31(42)
3.1 Metallurgical Aspects of Metal Casting
31(1)
3.1.1 Solidification of Liquid Metal in a Mold
31(1)
3.1.2 Castability (Fluidity)
32(1)
3.2 Classification of Casting Processes
32(24)
3.2.1 Classifications of Casting by Mold Material
33(1)
3.2.1.1 Green Sand Molds
33(10)
3.2.1.2 Dry Sand Molds -
43(1)
3.2.1.3 Core-Sand Molds
43(1)
3.2.1.4 Cement-Bonded Sand Molds
43(1)
3.2.1.5 Carbon Dioxide Process for Molding
43(1)
3.2.1.6 Plaster Molds
43(1)
3.2.1.7 Loam Molds
43(1)
3.2.1.8 Shell Molds
43(1)
3.2.1.9 Ceramic Molds
44(1)
3.2.1.10 Precision Molds (Investment Casting)
44(2)
3.2.1.11 Graphite Molds
46(1)
3.2.1.12 Permanent Molds
46(1)
3.2.2 Classifications of Castings by Method of Filling the Mold
46(1)
3.2.2.1 Die Casting
46(1)
3.2.2.2 Centrifugal Casting
47(2)
3.2.2.3 Continuous Casting
49(2)
3.2.2.4 The V-Process
51(1)
3.2.3 Classifications of Castings by Metal to Be Cast
51(1)
3.2.3.1 Ferrous Metals
51(3)
3.2.3.2 Nonferrous Metals
54(2)
3.3 Foundry Furnaces
56(4)
3.3.1 Cupola Furnaces
56(1)
3.3.1.1 Structure
56(1)
3.3.1.2 Operation
56(1)
3.3.2 Direct Fuel-Fired (Reverberatory) Furnaces
57(1)
3.3.3 Crucible (Pot) Furnaces
57(1)
3.3.4 Electric Furnaces
58(1)
3.3.4.1 Electric-Arc Furnace
58(1)
3.3.4.2 Resistance Furnace
59(1)
3.3.4.3 Induction Furnace
59(1)
3.4 Casting Defects and Design Considerations
60(4)
3.4.1 Common Defects in Castings
60(1)
3.4.1.1 Hot Tears
60(1)
3.4.1.2 Cold Shut
60(1)
3.4.1.3 Sand Wash
60(1)
3.4.1.4 Sand Blow
60(1)
3.4.1.5 Scab
60(1)
3.4.1.6 Shrinkage Porosity (or Cavity)
60(1)
3.4.1.7 Hard Spots
60(1)
3.4.1.8 Deviation of the Chemical Composition from the Desired One
60(1)
3.4.2 Design Considerations
60(1)
3.4.2.1 Promote Directional Solidification
60(1)
3.4.2.2 Ensure Easy Pattern Drawing
61(1)
3.4.2.3 Avoid the Shortcomings of Columnar Solidification
61(1)
3.4.2.4 Avoid Hot Spots
62(1)
3.4.2.5 Avoid the Causes of Hot Tears
62(1)
3.4.2.6 Distribute the Masses of a Section to Save Material
63(1)
3.4.2.7 Avoid Thicknesses Lower than the Recommended Minimum Section Thickness
63(1)
3.4.2.8 Strive to Make Small Projections in a Large Casting Separate
64(1)
3.4.2.9 Strive to Restrict Machined Surfaces
64(1)
3.4.2.10 Use Reinforcement Ribs to Improve the Rigidity of Thin, Large Webs
64(1)
3.4.2.11 Consider the Use of Cast-Weld Construction to Eliminate Costly Cored Design
64(1)
3.5 Cleaning, Testing, and Inspection of Castings
64(9)
3.5.1 Cleaning
64(2)
3.5.2 Testing and Inspection
66(1)
3.5.2.1 Testing of the Mechanical Properties of the Casting
67(1)
3.5.2.2 Inspection of the Dimensions
67(1)
3.5.2.3 Visual Examination
67(1)
3.5.2.4 Hydraulic Leak Testing
67(1)
3.5.2.5 Nondestructive Testing
67(1)
3.5.2.6 Testing for Metal Composition
67(1)
Review Questions
67(4)
Design Projects
71(2)
Chapter 4 Joining of Metals
73(50)
4.1 Riveting
73(1)
4.2 Welding
73(33)
4.2.1 Pressure Welding Processes
76(1)
4.2.1.1 Cold-Pressure Welding
77(1)
4.2.1.2 Explosive Welding
78(1)
4.2.1.3 Ultrasonic Welding
78(1)
4.2.1.4 Friction Welding
79(1)
4.2.1.5 Inertia Welding
80(1)
4.2.1.6 Induction Welding
80(1)
4.2.1.7 Thermit Welding
81(1)
4.2.1.8 Diffusion Bonding
81(1)
4.2.1.9 Butt Welding
82(1)
4.2.1.10 Flash Welding
82(2)
4.2.1.11 Percussion Welding
84(1)
4.2.1.12 Spot Welding
84(1)
4.2.1.13 Seam Welding
85(1)
4.2.1.14 Projection Welding
85(1)
4.2.2 Fusion Welding Processes
86(1)
4.2.2.1 Arc Welding
87(8)
4.2.2.2 Gas Welding
95(2)
4.2.2.3 Electron-Beam Welding
97(1)
4.2.2.4 Laser-Beam Welding
98(2)
4.2.2.5 Welding Defects
100(2)
4.2.2.6 Testing and Inspection of Welds
102(2)
4.2.2.7 Design Considerations
104(2)
4.3 Surfacing and Hardfacing
106(1)
4.4 Thermal Cutting of Metals
107(2)
4.4.1 Oxyfuel Cutting
107(1)
4.4.2 Arc Cutting
107(1)
4.4.2.1 Conventional Arc Cutting
108(1)
4.4.2.2 Air Arc Cutting
108(1)
4.4.2.3 Oxygen Arc Cutting
108(1)
4.4.2.4 Carbon Arc Cutting
108(1)
4.4.2.5 Tungsten Arc Cutting
108(1)
4.4.2.6 Air-Carbon Arc Cutting
108(1)
4.4.3 Plasma Cutting
108(1)
4.4.4 Laser-Beam Cutting
108(1)
4.5 Brazing and Soldering
109(4)
4.5.1 Fluxes
111(1)
4.5.2 Soldering Techniques
111(1)
4.5.3 Brazing Techniques
111(1)
4.5.3.1 Torch Brazing
111(1)
4.5.3.2 Furnace Brazing
111(1)
4.5.3.3 Induction Brazing
112(1)
4.5.3.4 Dip Brazing
112(1)
4.5.3.5 Salt-Bath Brazing
112(1)
4.5.3.6 Resistance Brazing
112(1)
4.5.4 Design of Brazed Joints
112(1)
4.6 Adhesive Bonding of Metals
113(10)
4.6.1 Adhesives
113(1)
4.6.1.1 Epoxies
114(1)
4.6.1.2 Phenolic
114(1)
4.6.1.3 Polyamide
114(1)
4.6.1.4 Silicones
114(1)
4.6.2 Joint Preparation
114(1)
4.6.3 Joint Design
114(1)
Review Questions
115(2)
Problems
117(3)
Design Projects
120(3)
Chapter 5 Metal Forming
123(62)
5.1 Fundamental Analysis and Metallurgy of Metal Forming
123(5)
5.1.1 Factors Affecting Plastic Deformation
123(1)
5.1.2 Estimating the Force Required for Metal Forming
124(2)
5.1.3 Heating the Metal for Hot Forming
126(1)
5.1.4 Friction and Lubrication in Working of Metals
126(1)
5.1.5 Cold Forming versus Hot Forming
127(1)
5.2 Rolling
128(8)
5.2.1 Fundamentals
128(2)
5.2.2 Load and Power Requirement
130(1)
5.2.3 Rolling Mills
131(1)
5.2.4 Classification of Rolling Mills
132(1)
5.2.5 The Range of Rolled Products
133(3)
5.2.6 Lubrication in Rolling Processes
136(1)
5.2.7 Defects in Rolled Products
136(1)
5.3 Metal Drawing
136(4)
5.3.1 Preparing the Metal for Drawing
137(1)
5.3.2 Wiredrawing
138(2)
5.3.3 Tube Drawing
140(1)
5.4 Extrusion
140(11)
5.4.1 Types of Extrusion
141(1)
5.4.1.1 Direct Extrusion
141(1)
5.4.1.2 Indirect Extrusion
142(1)
5.4.1.3 Hydrostatic Extrusion
142(2)
5.4.1.4 Impact Extrusion
144(1)
5.4.2 Load Requirement
145(1)
5.4.3 Metal Flow and Deformation
146(1)
5.4.4 Lubrication in Extrusion
147(1)
5.4.5 Defects in Extruded Products
147(1)
5.4.6 Design Considerations
148(1)
5.4.6.1 Conventional Extrusions
148(1)
5.4.6.2 Aluminum Impact Extrusions
148(3)
5.5 Forging
151(25)
5.5.1 General
151(3)
5.5.2 Open-Die Forging
154(1)
5.5.2.1 Open-Die Forging Operations
154(2)
5.5.2.2 Examples of Open-Die Forged Parts
156(1)
5.5.2.3 Equipment for Smith Forging
157(2)
5.5.2.4 Planning the Production of a Smith-Forged Part
159(1)
5.5.3 Closed-Die Forging
159(1)
5.5.3.1 Drop Forging
160(2)
5.5.3.2 Press Forging
162(1)
5.5.3.3 Die Forging in a Horizontal Forging Machine
163(1)
5.5.3.4 Recent Developments in Forging
163(2)
5.5.4 Forgeability
165(1)
5.5.4.1 Tests
165(1)
5.5.4.2 Forgeability of Some Alloys
166(1)
5.5.5 Lubrication in Forging
166(1)
5.5.6 Defects in Forged Products
166(1)
5.5.7 Forging Die Materials
167(1)
5.5.8 Fundamentals of Closed-Die Forging Design
167(9)
5.6 Cold-Forming Processes
176(9)
5.6.1 Sizing
176(1)
5.6.2 Swaging
177(1)
5.6.3 Coining
177(1)
5.6.4 Cold Heading
177(1)
5.6.5 Lubrication in Cold Forming
178(1)
Review Questions
178(3)
Problems
181(2)
Design Projects
183(2)
Chapter 6 Sheet Metal Working
185(36)
6.1 Press Working Operations
185(25)
6.1.1 Cutting Operations
185(3)
6.1.1.1 Mechanics of Sheet Metal Cutting
188(1)
6.1.1.2 Forces Required
189(1)
6.1.1.3 Bar Cropping
190(1)
6.1.1.4 Fine Blanking
191(1)
6.1.1.5 Miscellaneous Cutting Operations
191(1)
6.1.1.6 Cutting-Die Construction
192(2)
6.1.2 Bending Operations
194(1)
6.1.2.1 Mechanics of Bending
194(2)
6.1.2.2 Blank Development
196(1)
6.1.2.3 Classification of Bending Operations
196(1)
6.1.2.4 Miscellaneous Bending Operations
197(1)
6.1.3 Deep Drawing Operation
198(1)
6.1.3.1 Mechanics of Deep Drawing
199(2)
6.1.3.2 The Blank Holder
201(1)
6.1.3.3 Variables Affecting Deep Drawing
201(1)
6.1.3.4 Blank-Development Calculations
202(1)
6.1.3.5 Planning for Deep Drawing
203(1)
6.1.3.6 Ironing
204(1)
6.1.3.7 Drawing of Stepped, Conical, and Domed Cups
204(1)
6.1.3.8 Drawing of Box-Shaped Cups
205(2)
6.1.3.9 Recent Developments in Deep Drawing
207(1)
6.1.3.10 Defects in Deep-Drawn Parts
208(1)
6.1.4 Forming Operations
208(1)
6.1.4.1 Forming of Sheets
208(1)
6.1.4.2 Embossing Operations
209(1)
6.1.4.3 Rubber Forming of Flat Sheets
209(1)
6.1.4.4 Forming of Tubular Sheets
210(1)
6.2 High-Energy-Rate Forming (HERF)
210(3)
6.2.1 Explosive Forming
210(3)
6.2.2 Electrohydraulic Forming
213(1)
6.2.3 Electromagnetic Forming
213(1)
6.3 Spinning of Sheet Metal
213(8)
Review Questions
215(1)
Problems
216(2)
Design Projects
218(3)
Chapter 7 Powder Metallurgy
221(26)
7.1 General
221(1)
7.1.1 Definition
221(1)
7.1.2 Historical Background
221(1)
7.1.3 Why Powder Metallurgy?
221(1)
7.2 Metal Powders
222(4)
7.2.1 The Manufacture of Metal Powders
222(1)
7.2.1.1 Reduction
222(1)
7.2.1.2 Atomization
222(1)
7.2.1.3 Electrolytic Deposition
222(1)
7.2.1.4 Thermal Decomposition of Carbonyls
222(1)
7.2.1.5 Condensation of Metal Vapor
222(1)
7.2.1.6 Mechanical Processing of Solid Metals
222(1)
7.2.2 Properties of Metal Powders
223(1)
7.2.2.1 Chemical Composition
223(1)
7.2.2.2 Particle Shape
224(1)
7.2.2.3 Particle Size
224(1)
7.2.2.4 Particle-Size Distribution
224(1)
7.2.2.5 Specific Surface
224(1)
7.2.2.6 Flowability
225(1)
7.2.2.7 Bulk (or Apparent) Density
225(1)
7.2.2.8 Compressibility and Compactibility
225(1)
7.2.2.9 Sintering Ability
226(1)
7.2.3 Factors Affecting the Selection of Metal Powders
226(1)
7.3 Powder Metallurgy: The Basic Process
226(3)
7.3.1 Blending and Mixing
226(1)
7.3.2 Pressing
227(1)
7.3.3 Sintering
228(1)
7.4 Operational Flowchart
229(2)
7.5 Alternative Consolidation Techniques
231(3)
7.5.1 Loose Sintering
231(1)
7.5.2 Slip Casting
231(1)
7.5.3 Slurry Casting
231(1)
7.5.4 Vibratory Compaction
231(1)
7.5.5 Isostatic Pressing
232(1)
7.5.6 Powder Extrusion
233(1)
7.5.7 Powder Rolling
233(1)
7.5.8 High-Energy-Rate Compaction
233(1)
7.5.9 Injection Molding
233(1)
7.5.10 Hot Pressing
234(1)
7.6 Secondary Consolidation Operations
234(1)
7.6.1 Coining (Repressing)
234(1)
7.6.2 Extrusion, Swaging, or Rolling of Compacts
234(1)
7.6.3 Forging of Powder Preforms
234(1)
7.7 Finishing Operations
235(1)
7.7.1 Sizing
235(1)
7.7.2 Machining
235(1)
7.7.3 Oil Impregnation
235(1)
7.7.4 Infiltration
236(1)
7.7.5 Heat Treatment
236(1)
7.7.6 Steam Oxidizing
236(1)
7.7.7 Plating
236(1)
7.8 Porosity in Powder Metallurgy Parts
236(1)
7.9 Design Considerations for Powder Metallurgy Parts
237(2)
7.9.1 Holes
237(1)
7.9.2 Wall Thickness
237(1)
7.9.3 Fillets
238(1)
7.9.4 Tapers
238(1)
7.9.5 Chamfers
239(1)
7.9.6 Flanges
239(1)
7.9.7 Bosses
239(1)
7.9.8 Undercuts
239(1)
7.10 Advantages and Disadvantages of Powder Metallurgy
239(1)
7.11 Applications of Powder Metallurgy Parts
239(3)
7.11.1 Structural Components
240(1)
7.11.2 Self-Lubricating Bearings
240(1)
7.11.3 Filters
240(1)
7.11.4 Friction Materials
240(1)
7.11.5 Electrical Contact Materials
240(1)
7.11.6 Magnets
241(1)
7.11.7 Cores
241(1)
7.11.8 Powder Metallurgy Tool Steels
241(1)
7.11.9 Superalloys
241(1)
7.11.10 Refractory Metals
241(1)
7.11.11 Cemented Carbides
242(1)
7.12 Recent Developments in Powder Metallurgy
242(5)
Review Questions
242(1)
Problems
243(2)
Design Project
245(2)
Chapter 8 Plastics
247(26)
8.1 Introduction
247(1)
8.2 Classification of Polymers
247(2)
8.2.1 Thermoplastics
248(1)
8.2.2 Thermosets
249(1)
8.3 Properties Characterizing Plastics and Their Effect on Product Design
249(1)
8.3.1 Mechanical Properties
250(1)
8.3.2 Physical Properties
250(1)
8.4 Polymeric Systems
250(5)
8.4.1 Commonly Used Polymers
250(1)
8.4.1.1 Ethenic Group
250(2)
8.4.1.2 Polycarbonate Group
252(1)
8.4.1.3 Polyacetal Group
252(1)
8.4.1.4 Cellulosic Group
252(1)
8.4.1.5 Polyamide Group
252(1)
8.4.1.6 ABS
253(1)
8.4.1.7 Polyesters
253(1)
8.4.1.8 Phenolic Group
253(1)
8.4.1.9 Polyimides
253(1)
8.4.1.10 Epoxies
253(1)
8.4.1.11 Poly urethanes
253(1)
8.4.1.12 Silicones
254(1)
8.4.1.13 Elastomers
254(1)
8.4.2 Additives
254(1)
8.4.2.1 Fillers
254(1)
8.4.2.2 Plasticizers
254(1)
8.4.2.3 Lubricants
255(1)
8.4.2.4 Colorants
255(1)
8.4.2.5 Antioxidants
255(1)
8.4.2.6 Stabilizers
255(1)
8.5 Processing of Plastics
255(12)
8.5.1 Casting
255(1)
8.5.2 Blow Molding
255(1)
8.5.3 Injection Molding and Guidelines for Good Design of Parts
256(1)
8.5.3.1 Make the Thickness of a Product Uniform and as Small as Possible
257(1)
8.5.3.2 Provide Generous Fillet Radii
257(1)
8.5.3.3 Ensure That Holes Will Not Require Complex Tooling
257(1)
8.5.3.4 Provide Appropriate Draft
257(1)
8.5.3.5 Avoid Heavy Sections When Designing Bosses
257(1)
8.5.4 Compression Molding
257(1)
8.5.5 Transfer Molding
258(2)
8.5.6 Rotational Molding
260(1)
8.5.7 Extrusion
260(1)
8.5.8 Thermoforming
261(1)
8.5.9 Calendering
262(1)
8.5.10 Machining of Plastics
262(1)
8.5.11 Welding of Plastics
263(1)
8.5.11.1 Thermal Bonding of Plastics
263(1)
8.5.11.2 Ultrasonic Welding of Plastics
264(3)
8.6 Recycling of Plastics
267(6)
Review Questions
269(1)
Design Projects
270(3)
Chapter 9 Characteristics, Fabrication, and Design of Composites
273(28)
9.1 Overview
273(1)
9.2 Fiber-Reinforced Polymeric Composites
273(21)
9.2.1 Matrix Materials for FRPCs
274(1)
9.2.1.1 Thermoplastics
274(1)
9.2.1.2 Thermosetts
275(1)
9.2.2 Fiber Reinforcement
276(2)
9.2.2.1 Glass Fibers
278(1)
9.2.2.2 Carbon Fibers (Graphite Fibers)
278(1)
9.2.2.3 Boron Fibers
279(1)
9.2.2.4 Aramid Fibers
279(1)
9.2.2.5 Whiskers
279(1)
9.2.3 Forms of FRPCs and Fabrication Techniques
279(1)
9.2.3.1 Discontinuous Fiber Reinforcement
279(1)
9.2.3.2 Wet Lay-Up and Vacuum Bagging
280(2)
9.2.3.3 Unidirectional-Fiber Resin Prepregs
282(2)
9.2.3.4 Filament Winding
284(1)
9.2.3.5 Pultrusion Processing
285(1)
9.2.3.6 Sandwich-Panel Construction
285(3)
9.2.4 Post-Fabrication Processing
288(1)
9.2.4.1 Grinding of FRPCs
288(1)
9.2.4.2 Drilling of FRPCs
289(1)
9.2.4.3 Adhesive Bonding
289(1)
9.2.4.4 Painting and Coating
290(1)
9.2.5 Micromechanics of Composites
291(1)
9.2.5.1 Density
291(1)
9.2.5.2 Mechanical Properties
292(1)
9.2.6 Macromechanics
293(1)
9.2.7 Engineering Design with FRPCs
293(1)
9.3 Metal-Matrix Composites
294(2)
9.3.1 Reinforcement in Metal-Matrix Composites
294(1)
9.3.2 Metal-Matrix Alloys
295(1)
9.3.2.1 Aluminum Alloys
295(1)
9.3.2.2 Magnesium Alloys
295(1)
9.3.2.3 Titanium Alloys
295(1)
9.3.2.4 Copper Alloys
295(1)
9.3.3 Fabrication Techniques of MM Composites
295(1)
9.3.3.1 Casting
295(1)
9.3.3.2 Pressure Infiltration
295(1)
9.3.3.3 Employing Powder Metallurgy
296(1)
9.3.3.4 Spray Forming
296(1)
9.3.4 Properties and Applications
296(1)
9.4 Ceramic-Matrix Composites
296(1)
9.4.1 Fabrication Techniques of Ceramic-Matrix Composites
296(1)
9.4.1.1 Cold Pressing and Sintering
297(1)
9.4.1.2 Hot Pressing
297(1)
9.4.1.3 Infiltration
297(1)
9.4.2 Properties and Applications of CMCs
297(1)
9.5 Carbon-Carbon Composites
297(4)
9.5.1 Fabrication Techniques of Carbon-Carbon Composites
297(1)
9.5.1.1 High-Pressure Impregnation Carbonization
297(1)
9.5.1.2 Beginning with a Conventional Polymeric Matrix Composite Technique
298(1)
9.5.1.3 Chemical Vapor Deposition
298(1)
9.5.2 Properties and Applications of Carbon-Carbon Composites
298(1)
Review Questions
298(1)
Problems
299(2)
Chapter 10 Physics of Metal Cutting
301(28)
10.1 Cutting Angles
301(2)
10.2 Chip Formation
303(5)
10.2.1 Mechanics of Chip Formation
303(1)
10.2.2 Types of Chips
304(1)
10.2.2.1 Continuous Chip
304(1)
10.2.2.2 Discontinuous Chips
305(1)
10.2.2.3 Sheared Chips
305(1)
10.2.3 The Problem of the Built-Up Edge
305(1)
10.2.4 The Cutting Ratio
306(1)
10.2.5 Shear Strain during Chip Formation
307(1)
10.3 Cutting Forces
308(3)
10.3.1 Theory of Ernst and Merchant
308(3)
10.3.2 Theory of Lee and Shaffer
311(1)
10.4 Cutting Energy
311(1)
10.5 Oblique versus Orthogonal Cutting
311(5)
10.5.1 Forces in Oblique Cutting
313(3)
10.5.1.1 Example of Estimating Cutting Force Component
316(1)
10.6 Cutting Tools
316(5)
10.6.1 Basic Geometry
316(1)
10.6.1.1 Side Cutting-Edge Angle
316(1)
10.6.1.2 End Cutting-Edge Angle
317(1)
10.6.1.3 Side Relief and End Relief Angles
318(1)
10.6.1.4 Back and Side Rake Angles
318(1)
10.6.1.5 Tool Character
318(1)
10.6.2 Cutting Tool Materials
318(1)
10.6.2.1 Plain-Carbon Steel
318(1)
10.6.2.2 Alloy Steel
318(1)
10.6.2.3 High-Speed Steel
319(1)
10.6.2.4 Cast Hard Alloys
319(1)
10.6.2.5 Sintered Cemented-Carbide Tips
319(1)
10.6.2.6 Ceramic Tips
319(1)
10.6.2.7 Diamond
320(1)
10.6.3 Tool Wear
320(1)
10.6.4 Tool Life
320(1)
10.7 Machinability
321(1)
10.7.1 Machinability Defined
321(1)
10.7.2 Machinability Index
321(1)
10.8 Cutting Fluids
322(1)
10.8.1 Necessary Characteristics
322(1)
10.8.2 Types of Cutting Fluids
322(1)
10.8.2.1 Pure Oils
323(1)
10.8.2.2 Mixed Oils
323(1)
10.8.2.3 Soluble Oils
323(1)
10.8.2.4 Water Solutions
323(1)
10.8.2.5 Synthetic Fluids
323(1)
10.9 Chatter Phenomenon
323(1)
10.9.1 Forced Vibrations
323(1)
10.9.2 Self-Excited Vibrations, or Chatter
324(1)
10.10 Economics of Metal Cutting
324(5)
Review Questions
326(1)
Problems
327(1)
Design Project
328(1)
Chapter 11 Machining of Metals
329(54)
11.1 Introduction
329(1)
11.2 Turning Operations
329(16)
11.2.1 The Lathe and Its Construction
329(1)
11.2.1.1 Lathe Bed
329(1)
11.2.1.2 Headstock
330(1)
11.2.1.3 Tailstock
330(1)
11.2.1.4 Carriage
331(1)
11.2.2 The Turret Lathe
331(1)
11.2.3 Specifying a Lathe
332(1)
11.2.4 Tool Holding
332(1)
11.2.5 Lathe Cutting Tools
333(1)
11.2.5.1 Internal and External Tools
334(1)
11.2.5.2 Carbide Tips
335(1)
11.2.6 Methods of Supporting Workpieces in Lathe Operations
336(1)
11.2.6.1 Holding the Workpiece between Two Centers
336(1)
11.2.6.2 Holding the Workpiece in a Chuck
337(1)
11.2.6.3 Mounting the Workpiece on a Faceplate
338(1)
11.2.6.4 Using a Mandrel
338(1)
11.2.6.5 Holding the Workpiece in a Chuck Collet
338(1)
11.2.7 Lathe Operations
338(1)
11.2.7.1 Cylindrical Turning
339(1)
11.2.7.2 Facing
340(1)
11.2.7.3 Groove Cutting
340(1)
11.2.7.4 Boring and Internal Turning
341(1)
11.2.7.5 Taper Turning
341(1)
11.2.7.6 Thread Cutting
342(1)
11.2.7.7 Knurling
343(1)
11.2.8 Cutting Speeds and Feeds
343(1)
11.2.9 Design Considerations for Turning
344(1)
11.3 Shaping and Planing Operations
345(4)
11.3.1 Horizontal Push-Cut Shaper
346(1)
11.3.1.1 Construction
346(1)
11.3.1.2 Quick-Return Mechanism
347(1)
11.3.2 Vertical Shaper
348(1)
11.3.3 Planer
348(1)
11.3.4 Planing and Shaping Tools
349(1)
11.4 Drilling Operations
349(9)
11.4.1 Cutting Tools for Drilling Operations
349(1)
11.4.1.1 Twist Drill
349(1)
11.4.1.2 Core Drill
349(1)
11.4.1.3 Gun Drill
350(1)
11.4.1.4 Spade Drill
350(1)
11.4.1.5 Saw-Type Cutter
351(1)
11.4.1.6 Drills Made in Combination with Other Tools
351(1)
11.4.2 Cutting Speeds and Feeds in Drilling
351(1)
11.4.3 Other Types of Drilling Operations
352(1)
11.4.3.1 Boring
352(1)
11.4.3.2 Counterboring
352(1)
11.4.3.3 Spot Facing
353(1)
11.4.3.4 Countersinking
353(1)
11.4.3.5 Reaming
353(1)
11.4.3.6 Tapping
354(1)
11.4.4 Design Considerations for Drilling
354(1)
11.4.5 Classification of Drilling Machines
354(1)
11.4.5.1 Bench-Type Drilling Machines
355(1)
11.4.5.2 Upright Drilling Machines
356(1)
11.4.5.3 Multispindle Drilling Machines
357(1)
11.4.5.4 Gang Drilling Machines
357(1)
11.4.5.5 Radial Drills
357(1)
11.4.5.6 Turret Drilling Machines
357(1)
11.4.5.7 Deep-Hole Drilling Machines
358(1)
11.4.5.8 Jig-Boring Machines
358(1)
11.4.6 Work-Holding Devices in Drilling
358(1)
11.5 Milling Operations
358(7)
11.5.1 Milling Methods
359(1)
11.5.1.1 Up Milling (Conventional Milling)
359(1)
11.5.1.2 Down Milling (Climb Milling)
359(1)
11.5.2 Types of Milling Cutters
359(1)
11.5.2.1 Plain Milling Cutter
359(1)
11.5.2.2 Face Milling Cutter
359(1)
11.5.2.3 Plain Metal-Slitting Saw
360(1)
11.5.2.4 Side Milling Cutter
360(1)
11.5.2.5 Angle Milling Cutter
360(1)
11.5.2.6 T-Slot Cutter
361(1)
11.5.2.7 End Mill Cutter
361(1)
11.5.2.8 Form Milling Cutter
361(1)
11.5.3 Materials of Milling Cutters
361(1)
11.5.4 Cutting Speeds and Feeds in Milling
361(1)
11.5.5 Cutting Angles of Milling Cutters
361(1)
11.5.6 Types of Milling Machines
361(2)
11.5.6.1 Plain Horizontal Milling Machine
363(1)
11.5.6.2 Universal Milling Machine
363(1)
11.5.6.3 Vertical Milling Machine
363(1)
11.5.6.4 Duplicator
363(1)
11.5.6.5 Machining Center
363(2)
11.5.6.6 Universal Dividing Head
365(1)
11.6 Grinding Operations
365(5)
11.6.1 Types of Grinding Operations
366(1)
11.6.1.1 Surface Grinding
366(1)
11.6.1.2 Cylindrical Grinding
366(1)
11.6.1.3 Internal Grinding
367(1)
11.6.1.4 Centerless Grinding
368(1)
11.6.2 Grinding Wheels
368(1)
11.6.2.1 Shape and Size of Grinding Wheels
369(1)
11.6.2.2 Kind of Abrasive
369(1)
11.6.2.3 Grain Size of Abrasive Used
369(1)
11.6.2.4 Grade of the Bond
370(1)
11.6.2.5 Structure
370(1)
11.6.2.6 Binder
370(1)
11.6.2.7 Standard Marking System
370(1)
11.7 Sawing Operations
370(2)
11.7.1 Types of Sawing Teeth
371(1)
11.7.2 Sawing Machines
371(1)
11.7.2.1 Reciprocating Saw
371(1)
11.7.2.2 Circular Saw
371(1)
11.7.2.3 Band Saw
371(1)
11.8 Broaching Operations
372(1)
11.8.1 Broaching Machines
372(1)
11.8.1.1 Pull-Type Machines
372(1)
11.8.1.2 Push-Type Machines
372(1)
11.8.1.3 Surface-Broaching Machines
373(1)
11.8.1.4 Continuous-Broaching Machines
373(1)
11.8.2 Advantages and Limitations of Broaching Operations
373(1)
11.9 Nontraditional Machining Operations
373(10)
11.9.1 Ultrasonic Machining
373(1)
11.9.2 Abrasive-Jet Machining
374(1)
11.9.3 Chemical Machining
374(1)
11.9.3.1 Etchants
374(1)
11.9.3.2 Masking Methods
375(1)
11.9.4 Electrochemical Machining
375(1)
11.9.4.1 The Basic Process
375(1)
11.9.4.2 Process Parameters
376(1)
11.9.4.3 Advantages and Limitations
376(1)
11.9.4.4 Applications
376(1)
11.9.5 Electrical Discharge Machining
376(1)
11.9.5.1 Die Sinker EDM
377(2)
11.9.5.2 Wire EDM
379(1)
11.9.5.3 Hole-Drilling EDM
379(1)
Review Questions
379(1)
Problems
380(3)
Chapter 12 Design for Assembly (DFA)
383(18)
12.1 Introduction
383(1)
12.2 Types and Characteristics of Assembly Methods
384(1)
12.2.1 Manual Assembly
384(1)
12.2.2 Automatic Assembly Using Special-Purpose Machines
384(1)
12.2.3 Automatic Assembly Using Robots
384(1)
12.3 Comparison of Assembly Methods
385(1)
12.4 Selection of Assembly Method
386(1)
12.5 Product Design for Manual Assembly
387(1)
12.6 Product Design for Automatic Assembly
388(5)
12.7 Product Design for Robotic Assembly
393(1)
12.8 Methods for Evaluating and Improving Product DFA
394(7)
12.8.1 The Boothroyd-Dewhurst DFA Method
394(3)
12.8.2 The Hitachi Assembly Evaluation Method
397(1)
12.8.3 The Lucas DFA Method
398(1)
12.8.3.1 Functional Analysis
398(1)
12.8.3.2 Feeding Analysis
399(1)
12.8.3.3 Fitting Analysis
399(1)
12.8.4 Other Methods
400(1)
Review Questions
400(1)
Design Project
400(1)
Chapter 13 Additive Manufacturing
401(16)
13.1 Introduction
401(1)
13.2 The Various Additive Manufacturing Categories
402(12)
13.2.1 Material Jetting (3D Printing)
402(1)
13.2.1.1 Applications of 3D Printing Technology
402(1)
13.2.1.2 Advantages of 3D Printing Technology
403(1)
13.2.1.3 Disadvantages/Limitations of 3D Printing
403(1)
13.2.2 Vat Photopolymerization (Stereolithography)
403(1)
13.2.2.1 Applications of Stereolithography
403(1)
13.2.2.2 Advantages of Stereolithography
404(1)
13.2.2.3 Limitations of Stereolithography
404(1)
13.2.3 Powder Bed Fusion
404(2)
13.2.3.1 Applications of Powder Bed Fusion (Metal Additive Manufacturing)
406(1)
13.2.3.2 Advantages of Powder Bed Fusion
406(1)
13.2.3.3 Disadvantages (Limitations) of Powder Bed Fusion
407(1)
13.2.3.4 Design for Additive Manufactured Parts
408(1)
13.2.4 Direct Energy Deposition
409(1)
13.2.4.1 Applications of Direct Energy Deposition
410(1)
13.2.4.2 Advantages of Direct Energy Deposition
410(1)
13.2.4.3 Disadvantages of Direct Energy Deposition
410(1)
13.2.5 Binder Jetting
410(1)
13.2.5.1 Applications of the Binder Jetting Process
411(1)
13.2.5.2 Advantages of the Binder Jetting Process
412(1)
13.2.5.3 Disadvantages of the Binder Jetting Process
412(1)
13.2.5.4 Design for Parts Produced by Binder Jetting
412(1)
13.2.6 Additive Manufacturing Material Extrusion
412(1)
13.2.6.1 Applications of Additive Manufacturing Material Extrusion
413(1)
13.2.6.2 Advantages of Additive Manufacturing Material Extrusion
413(1)
13.2.6.3 Disadvantages of Additive Manufacturing Material Extrusion
413(1)
13.2.6.4 Design for Parts Produced by the FFF Process
413(1)
13.2.7 Sheet Lamination
413(1)
13.2.7.1 Applications of Sheet Lamination
414(1)
13.2.7.2 Advantages of Sheet Lamination
414(1)
13.3 Summary of the Various Additive Manufacturing Processes
414(1)
13.4 Impact on Industry
414(3)
Review Questions
415(1)
Design Project
416(1)
Chapter 14 Computer-Aided Manufacturing
417(40)
14.1 Introduction
417(1)
14.2 Numerical Control (NC)
417(16)
14.2.1 Overview
417(1)
14.2.2 Historical Background
417(1)
14.2.3 Simplified Idea of Numerical Control
418(1)
14.2.4 Advantages of Numerical Control
418(1)
14.2.5 Elements of an NC System
419(1)
14.2.6 The Coordinate System and Dimensioning Modes
420(1)
14.2.7 NC Machine Motions
421(2)
14.2.8 Types of NC Systems
423(2)
14.2.9 Punched Tape and Tape Coding
425(3)
14.2.10 Manual Part Programming
428(3)
14.2.11 Computerized Numerical Control (CNC)
431(1)
14.2.12 Direct Numerical Control (DNC)
432(1)
14.3 Program Preparation and Coding
433(11)
14.3.1 Programming for CNC Milling Machines
433(1)
14.3.1.1 Introductory Programming
433(2)
14.3.1.2 Canned Cycles
435(1)
14.3.1.3 Do Loops and Subroutines
435(2)
14.3.1.4 Parametric Programming
437(3)
14.3.2 Programming for CNC Lathe
440(3)
14.3.2.1 Introductory Programming
443(1)
14.3.2.2 Fixed Cycles
443(1)
14.4 Computer-Aided Part Programming
444(9)
14.4.1 Internal Computer Operation
446(1)
14.4.2 NC Programming Languages
447(1)
14.4.3 Details of the COMPACT II Language
448(1)
14.4.3.1 Guidelines
448(1)
14.4.3.2 Structure
449(3)
14.4.4 Graphics NC Systems
452(1)
14.4.4.1 Features
452(1)
14.4.4.2 Advantages of Graphics NC Systems
453(1)
14.5 CAD/CAM Systems
453(1)
14.6 Other Applications of Computer-Aided Manufacturing
453(4)
14.6.1 Computerized Cost Estimation
453(1)
14.6.2 Computer-Aided Process Planning
453(1)
14.6.3 Computerized Machinability Data Systems
454(1)
14.6.4 Computer-Aided Monitoring and Control of Manufacturing Processes
454(1)
Review Questions
455(1)
Design Project
456(1)
Chapter 15 Automated Manufacturing Systems
457(24)
15.1 Introduction
457(1)
15.2 Computer-Integrated Manufacturing (CIM)
457(5)
15.2.1 Benefits of CIM
458(1)
15.2.1.1 Improved Product Quality
459(1)
15.2.1.2 Improved Labor Productivity
459(1)
15.2.1.3 Improved Equipment Productivity
459(1)
15.2.1.4 Lower Costs of Products
459(1)
15.2.1.5 Increased Market Share and More Profit
459(1)
15.2.2 Implementation of CIM
459(1)
15.2.3 The CIM Database
460(1)
15.2.3.1 Classes of CIM Database
460(1)
15.2.3.2 Logical and Physical Databases
460(1)
15.2.4 Communication Networks
460(1)
15.2.4.1 Network Structures
461(1)
15.2.4.2 Network Architectures
462(1)
15.3 Group Technology (GT)
462(8)
15.3.1 Reasons for Adopting GT
463(1)
15.3.2 Benefits of GT
464(1)
15.3.2.1 Benefits in Product Design
464(1)
15.3.2.2 Standardization of Tooling and Setup
464(1)
15.3.2.3 More Efficient Material Handling
464(1)
15.3.2.4 Improved Economies of Batch-Type Production
464(1)
15.3.2.5 Easier Scheduling
464(1)
15.3.2.6 Reduced Work-in-Process and Lead Time
464(1)
15.3.2.7 Faster and More Rational Process Planning
464(1)
15.3.3 Factors Preventing Widespread Application of GT
465(1)
15.3.3.1 Problems Associated with Rearrangement of Physical Equipment
465(1)
15.3.3.2 Need for Large Amount of Upfront Work
465(1)
15.3.3.3 Natural Resistance to Anything New
466(1)
15.3.4 Classification and Coding of Parts
466(1)
15.3.4.1 Implementation of a Classification and Coding System
466(1)
15.3.4.2 Construction of a Coding System
466(2)
15.3.5 Design of Production Cells
468(1)
15.3.6 Production-Flow Analysis
468(2)
15.4 Computer-Aided Process Planning (CAPP)
470(2)
15.4.1 Benefits of CAPP
470(1)
15.4.1.1 Improved Productivity
470(1)
15.4.1.2 Lower Costs of Products
470(1)
15.4.1.3 Consistency of Process Plans
470(1)
15.4.1.4 Reduction in Time Required to Develop a Process Plan
470(1)
15.4.1.5 Faster Response to Changes in the Production Parameters
471(1)
15.4.1.6 Less Clerical Effort and Paperwork
471(1)
15.4.2 Types of CAPP
471(1)
15.4.2.1 Variant Type
471(1)
15.4.2.2 Generative Type
471(1)
15.5 Material-Requirement Planning
472(1)
15.6 The Potential of Artificial Intelligence in Manufacturing
472(2)
15.6.1 Expert Systems
473(1)
15.6.1.1 Definition
473(1)
15.6.1.2 Applications in Manufacturing
473(1)
15.6.2 Artificial Vision
473(1)
15.6.3 Intelligent Robots
473(1)
15.7 Flexible Manufacturing Systems (FMS)
474(2)
15.7.1 Elements of a Flexible Manufacturing System
474(1)
15.7.1.1 Machine Tools
475(1)
15.7.1.2 Material-Handling System
476(1)
15.7.1.3 Computer-Control System
476(1)
15.8 Flexible Manufacturing Cells
476(1)
15.9 Internet of Things (IoT)
477(1)
15.10 Supply Chain Management (SCM)
478(3)
Review Questions
479(1)
Design Project
480(1)
Appendix 481(24)
Bibliography 505(4)
Index 509
Sherif D. El Wakil, PhD, is Chancellor Professor of Mechanical Engineering at the University of Massachusetts, Dartmouth. Dr. El Wakil has over 40 years of experience in academia, teaching various manufacturing engineering courses at both the undergraduate and graduate levels. He also served in various administrative functions, including Dean, Chairman of the Academic Council of the College of Engineering, and Chairman of the Mechanical Engineering Department. Dr. El Wakil has implemented multiple programs at the undergraduate and graduate levels and overseen their ascendency to national ranking. Dr. El Wakil is the author of Processes and Design for Manufacturing, which has been translated into multiple languages and adopted at many of the worlds top engineering programs. He received many research grants from NSF, NIST, and SME, and he was awarded the USAF Fellowship. Dr. El Wakil provided consulting work for numerous national and international manufacturing corporations and served as an expert witness before courts. He has been a member of the Society of Manufacturing Engineers (SME) since 1984, and he was elected a member of the North American Manufacturing Research Institute (NAMRI) in the same year. He also served as a member and chair of the Curriculum Committee of the SME Education Foundation. His professional excellence and consistent contributions to the activities of the SME have been acknowledged with the Presidents Award twice, in 1985 and 2006. He became a lifelong member of SME in 2015.