Atnaujinkite slapukų nuostatas

El. knyga: Product Life-Cycle Management: Geometric Variations

Edited by , Edited by , Edited by
  • Formatas: EPUB+DRM
  • Išleidimo metai: 17-Dec-2012
  • Leidėjas: ISTE Ltd and John Wiley & Sons Inc
  • Kalba: eng
  • ISBN-13: 9781118587522
Kitos knygos pagal šią temą:
  • Formatas: EPUB+DRM
  • Išleidimo metai: 17-Dec-2012
  • Leidėjas: ISTE Ltd and John Wiley & Sons Inc
  • Kalba: eng
  • ISBN-13: 9781118587522
Kitos knygos pagal šią temą:

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

This book gives a comprehensive view of the most recent major international research in the field of tolerancing, and is an excellent resource for anyone interested in Computer Aided Tolerating. It is organized into 4 parts. Part 1 focuses on the more general problems of tolerance analysis and synthesis, for tolerancing in mechanical design and manufacturing processes. Part 2 specifically highlights the simulation of assembly with defects, and the influence of tolerances on the quality of the assembly. Part 3 deals with measurement aspects, and quality control throughout the life cycle. Different measurement technologies and methods for estimating uncertainty are considered. In Part 4, different aspects of tolerancing and their interactions are explored, from the definition of functional requirement to measurement processes in a PLM approach.
Preface xix
Part I Tolerance Analysis and Synthesis
1(172)
Chapter 1 A New Method of Expressing Functional Requirements and How to Allocate Tolerance to Parts
3(18)
Pierre-Antoine Adragna
Pascal Hernandez
1.1 Introduction
3(1)
1.2 Brief review
4(6)
1.2.1 How to compare
4(2)
1.2.2 Statistical tolerancing methods
6(4)
1.3 Proposed method
10(7)
1.3.1 Functional requirements
11(3)
1.3.2 The tolerancing strategy
14(3)
1.4 Discussion
17(2)
1.4.1 Efficiency of the proposed method
17(1)
1.4.2 Comparison to existing approaches
17(2)
1.5 Bibliography
19(2)
Chapter 2 A Parametric Approach to Determine Minimum Clearance in Overconstrained Mechanisms
21(18)
Philippe Serre
Faida M'Henni
Andre Clement
2.1 Introduction
22(2)
2.2 Compatibility relations between specification parameters
24(5)
2.2.1 Modeling the geometric constraints problem
24(1)
2.2.2 Compatibility relations for assemblability requirement
25(2)
2.2.3 Compatibility relations for mobility requirement
27(2)
2.3 Framework for minimum clearance determination
29(4)
2.3.1 Nominal and associated mechanism
30(1)
2.3.2 Actual and associated parts
31(1)
2.3.3 Synthetic scheme
32(1)
2.4 Application
33(3)
2.4.1 First case
33(2)
2.4.2 Second case
35(1)
2.5 Conclusion
36(1)
2.6 Bibliography
37(2)
Chapter 3 Quick GPS: Tolerancing of an Isolated Part
39(20)
Robin Chavanne
Bernard Anselmetti
3.1 Introduction
39(1)
3.2 Mechanism definition
40(2)
3.2.1 The positioning plan
40(1)
3.2.2 Description with positioning tables
41(1)
3.3 Datum system specifications
42(5)
3.3.1 Positioning requirements
42(1)
3.3.2 Positioning specifications
42(5)
3.4 Relative position of reference frames
47(5)
3.4.1 Links between reference frames
47(2)
3.4.2 Specification corresponding to links
49(3)
3.5 VBA application
52(5)
3.5.1 General structure
52(1)
3.5.2 Data acquisition and verification
53(2)
3.5.3 Tolerancing process
55(2)
3.6 Conclusion
57(1)
3.7 Bibliography
57(2)
Chapter 4 Synthesis and Statistical Analysis for 3D Tolerancing
59(18)
Max Giordano
Pascal Hernandez
Dimitri Denimal
4.1 Introduction
59(2)
4.1.1 Literature review
60(1)
4.1.2 The domain model
61(1)
4.2 Stack-up tolerance synthesis
61(5)
4.2.1 Serial mechanisms
61(2)
4.2.2 Analysis for worst case stack-up tolerances
63(1)
4.2.3 Analysis with the statistical approach
64(1)
4.2.4 Synthesis for stack-up tolerances
65(1)
4.3 Serial mechanisms with non-perfect contacts
66(2)
4.3.1 Analysis in the worst case
67(1)
4.3.2 Analysis with the statistical approach
67(1)
4.3.3 Synthesis for a serial mechanical system
68(1)
4.4 "Reducible" structure
68(4)
4.4.1 Parallel mechanical structure
68(2)
4.4.2 Introduction to "reducible" structure
70(1)
4.4.3 Algorithm and computational method
71(1)
4.5 Example of the pin-hole assembly
72(3)
4.5.1 Main data
72(2)
4.5.2 Major results
74(1)
4.6 Conclusion and discussion
75(1)
4.6.1 Conclusion
75(1)
4.6.2 Discussion and future works
75(1)
4.7 Bibliography
76(1)
Chapter 5 Reliability Analysis of the Functional Specification Applied to a Helicopter Gas Turbine
77(22)
Yann Ledoux
Denis Teissandier
Samir Sid-Ahmed
5.1 Introduction
77(1)
5.2 Studied case
78(5)
5.2.1 Tolerancing model
79(4)
5.3 Deterministic approach
83(3)
5.3.1 Sensitivity and elasticity analysis
84(2)
5.3.2 Discussion about the determinist results
86(1)
5.4 Probabilistic approach
86(10)
5.4.1 Definition of the state functions
88(1)
5.4.2 Determination of the statistical parameters from the tolerancing model
89(1)
5.4.3 Failure rate estimation
90(1)
5.4.4 Influence of the tolerancing parameters on the failure probability
91(2)
5.4.5 Sensibility analysis on the failure probability
93(1)
5.4.6 Parametric analysis of the Y8 parameter
94(2)
5.5 Conclusion
96(1)
5.6 Acknowledgments
96(1)
5.7 Bibliography
97(2)
Chapter 6 Inertial Tolerancing According to ISO GPS
99(26)
Dimitri Denimal
Max Giordano
Maurice Pillet
Alain Sergent
6.1 Introduction
99(1)
6.2 Tolerance synthesis
100(14)
6.2.1 Definition of the functional requirement domain (FRD) applied to localization specification
101(2)
6.2.2 Tolerance synthesis of a stack of parts
103(2)
6.2.3 Example of tolerance synthesis
105(4)
6.2.4 Process capability indices applied to SDT
109(1)
6.2.5 Statistical tolerancing risk
110(1)
6.2.6 Inertial tolerancing: short reminder
111(1)
6.2.7 Inertial tolerancing with stack-up problem
112(2)
6.3 3D inertia
114(7)
6.3.1 3D inertia definitions and comparison
114(3)
6.3.2 3D inertia definitions comparison
117(2)
6.3.3 3D inertia in the industrial context
119(2)
6.3.4 3D inertia- conclusions
121(1)
6.4 Conclusions
121(1)
6.5 Bibliography
122(3)
Chapter 7 Tolerance Analysis based on Quantified Constraint Satisfaction Problems
125(20)
Ahmed Jawad Qureshi
Jean-Yves Dantan
Jerome Bruyere
Regis Bigot
7.1 Introduction
125(2)
7.2 Quantifier notion and mathematical formulation of tolerance synthesis
127(5)
7.2.1 Quantifier notion for geometrical product requirement
127(1)
7.2.2 Mathematical formulation of tolerance analysis for geometrical product requirement
128(4)
7.3 Worst case tolerance analysis based on quantified constraint satisfaction problems
132(2)
7.3.1 QCSP
132(1)
7.3.2 New mathematical formulation of tolerance analysis for QCSP solver
133(1)
7.4 Statistical tolerance analysis based on constraint satisfaction problems and Monte Carlo simulation
134(5)
7.4.1 Algorithm for statistical tolerance analysis by Monte Carlo simulation and CSP technique
135(4)
7.5 Applications
139(2)
7.6 Discussion
141(1)
7.7 Bibliography
142(3)
Chapter 8 Tolerance Analysis in Manufacturing Using the MMP, Comparison and Evaluation of Three Different Approaches
145(28)
Mojtaba Kamali Nejad
Frederic Vignat
Francois Villeneuve
8.1 Introduction
146(1)
8.2 MMP
147(2)
8.3 Tolerance analysis and virtual gauge
149(1)
8.4 Worst case searching
150(5)
8.4.1 Optimization technique
150(5)
8.5 Combined approach
155(3)
8.5.1 The combined approach functional elements
155(3)
8.6 Monte Carlo simulation
158(2)
8.7 Example and comparison
160(9)
8.7.1 First section
160(4)
8.7.2 Second section
164(4)
8.7.3 Discussion
168(1)
8.8 Conclusion
169(1)
8.9 Bibliography
170(3)
Part II Simulation of Assemblies
173(126)
Chapter 9 A Chronological Framework for Virtual Sheet Metal Assembly Design
175(16)
Johan Segeborn
Anders Carlsson
Johan S. Carlson
Rikard Soderberg
9.1 Introduction
175(4)
9.1.1 A generic product development process
176(1)
9.1.2 Automotive sheet metal assembly
177(2)
9.2 Proposed framework
179(9)
9.2.1 Planning
181(1)
9.2.2 Concept development
181(1)
9.2.3 System-level design
182(3)
9.2.4 Detail design
185(3)
9.3 Summary and future work
188(1)
9.4 Acknowledgments
189(1)
9.5 Bibliography
189(2)
Chapter 10 A Method to Optimize Geometric Quality and Motion Feasibility of Assembly Sequences
191(18)
Domenico Spensieri
Johan S. Carlson
Lars Lindkvist
Robert Bohlin
Rikard Soderberg
10.1 Introduction
191(3)
10.1.1 Problem motivation
191(1)
10.1.2 Related work
192(2)
10.2 Modeling and algorithms
194(10)
10.2.1 Modeling connections
194(5)
10.2.2 Stability and variation analysis
199(1)
10.2.3 Assembly sequences
200(3)
10.2.4 Path planning
203(1)
10.3 Assembly planning
204(1)
10.4 Industrial test case
204(2)
10.5 Conclusions and future work
206(1)
10.6 Acknowledgments
207(1)
10.7 Bibliography
207(2)
Chapter 11 Modeling and Simulation of Assembly Constraints in Tolerance Analysis of Rigid Part Assemblies
209(22)
Pasquale Franciosa
Salvatore Gerbino
Stanislao Patalano
11.1 Introduction
209(2)
11.2 SVA-TOL methodology overview
211(1)
11.3 Assembly constraint modeling
212(10)
11.3.1 Fully-constrained assembly
217(4)
11.3.2 Over-constrained assembly
221(1)
11.4 Case study one: assembly of two-part assembly
222(3)
11.5 Case study two: industrial application
225(2)
11.6 Conclusions
227(1)
11.7 Bibliography
228(3)
Chapter 12 Tolerance Analysis with detailed Part Modeling
231(14)
Tobias Stoll
Stefan Wittmann
Harald Meerkamm
12.1 Introduction
231(1)
12.2 Related work
232(1)
12.3 The proposed modeling and analysis of toleranced assemblies
233(1)
12.4 Simulation of non-ideal parts
234(1)
12.5 Relative positioning
235(4)
12.5.1 Defined objective functions
236(1)
12.5.2 Particle swarm optimization
237(1)
12.5.3 Independence of the positioning steps
238(1)
12.5.4 Parallelization
238(1)
12.6 Analysis of the positioned assemblies
239(1)
12.7 Example
239(2)
12.8 Summary
241(1)
12.9 Acknowledgements
242(1)
12.10 Bibliography
242(3)
Chapter 13 Assembly Method Comparison Including Form Defect
245(14)
Stephane Moriere
Jean Mailhe
Jean-Marc Linares
Jean-Michel Sprauel
13.1 Introduction
245(3)
13.1.1 Topic
245(1)
13.1.2 Actual lack of CAD
246(1)
13.1.3 State of the art and proposal
246(2)
13.2 Geometric model for simulation
248(4)
13.2.1 Part with form defects
248(2)
13.2.2 Assembly process
250(1)
13.2.3 Function for optimization
250(2)
13.2.4 Constraints
252(1)
13.3 Experimentation
252(1)
13.3.1 Case study
252(1)
13.3.2 Simulation setup
253(1)
13.4 Result discussion
253(3)
13.4.1 Case 1
253(1)
13.4.2 Case 2
254(1)
13.4.3 Case 3
255(1)
13.4.4 Case 4
255(1)
13.5 Summary
256(1)
13.6 Bibliography
256(3)
Chapter 14 Influence of Geometric Defects on Service Life
259(14)
Laurent Zamponi
Emmanuel Mermoz
Jean-Marc Linares
Jean-Michel Sprauel
14.1 Introduction
259(4)
14.1.1 Topic
259(1)
14.1.2 Service life functional requirements
260(1)
14.1.3 State of the art
261(2)
14.2 Calculation methodology of contact pressure and orbital speed variation
263(5)
14.2.1 Schedule of the methodology
265(1)
14.2.2 Introduction of geometric defects in FEM
265(1)
14.2.3 Model of geometric defect
266(2)
14.3 Simulation
268(3)
14.3.1 Studied case
268(1)
14.3.2 Effect of the localization defect on orbital speed variation
269(1)
14.3.3 Effect of the orientation defect on the contact load and orbital speed variation
269(1)
14.3.4 Effect of the form defects and undulation on speed variation
270(1)
14.4 Summary
271(1)
14.5 Bibliography
272(1)
Chapter 15 Gapspace Multi-dimensional Assembly Analysis
273(26)
Edward Morse
Xiaobin You
15.1 Introduction
273(2)
15.2 Representing dimensions and tolerances
275(1)
15.3 Geometric tolerances
276(3)
15.4 Perfect form tolerance zones
279(1)
15.5 Assembly tolerance specification
279(1)
15.6 Floating assembly
280(2)
15.7 Kinematic assembly
282(1)
15.8 Manufacturing dimensioning schemes
282(2)
15.9 The revised 2D tolerance chart
284(1)
15.10 Parametric representation of the PF-tolerance zone of a CS-feature
284(4)
15.11 Surfaces of revolution
288(1)
15.12 Nominal dimensions of the CS
288(1)
15.13 ID constraining simplices
289(1)
15.14 2D constraining simplices
290(3)
15.15 Case study
293(4)
15.16 Conclusion
297(1)
15.17 Acknowledgements
298(1)
15.18 Bibliography
298(1)
Part III Measurement
299(132)
Chapter 16 Impact of the Sampling Strategy on Geometrical Checking Uncertainties
301(16)
Jean Mailhe
Jean-Marc Linares
Jean-Michel Sprauel
Jean-Paul Raynal
16.1 Introduction
301(1)
16.2 Geometrical verification and virtual gauges
302(2)
16.2.1 Verification by virtual gauge without best fit
302(1)
16.2.2 Verification with associated feature
303(1)
16.2.3 Statistical point of view
304(1)
16.3 Field of probability of the presence of matter
304(2)
16.4 Virtual gauges
306(2)
16.5 Interference probability map
308(1)
16.5.1 Geometrical verification process
308(1)
16.6 Experiment
309(5)
16.6.1 Envelope zone specification
309(3)
16.6.2 Perpendicularity specification
312(2)
16.7 Conclusion
314(1)
16.8 Bibliography
315(2)
Chapter 17 Predetermination of Measurement Uncertainty in the Application of Computed Tomography
317(14)
Albert Weckenmann
Philipp Kramer
17.1 Introduction
317(1)
17.2 Prior investigations
318(1)
17.3 Measurements of user-controllable influences
319(4)
17.4 Estimation of influences
323(2)
17.5 Calculation of the task-specific measurement uncertainty according to GUM
325(4)
17.6 Summary
329(1)
17.7 Acknowledgments
330(1)
17.8 Bibliography
330(1)
Chapter 18 Application of Function Oriented Parameters for Areal Measurements in Surface Engineering
331(14)
Albert Weckenmann
Ozgur Tan
18.1 Introduction
331(1)
18.2 Surface measurements
332(1)
18.3 Functional parameters
333(2)
18.3.1 2D functional parameters from ISO 13565-2
333(1)
18.3.2 3D functional parameters
334(1)
18.4 Characterization of the whole application
335(1)
18.5 Case study: spreading liquid on metal surfaces
336(7)
18.5.1 Step 1: gathering information
336(1)
18.5.2 Step 2: modeling the system
336(1)
18.5.3 Step 3: application of a functional test
337(4)
18.5.4 Step 4: surface requirements
341(1)
18.5.5 Step 5: measurement system
341(1)
18.5.6 Step 6: functional parameters
342(1)
18.6 Conclusions
343(1)
18.7 Acknowledgments
343(1)
18.8 Bibliography
343(2)
Chapter 19 Validation of a Reception or Production Control Process by the Inertial Indicator Ig
345(10)
Daniel Duret
Maurice Pillet
Alain Sergent
Dimitri Denimal
19.1 Introduction
345(1)
19.2 Comparison of the "production controls" and "reception controls" approaches
346(2)
19.3 Production bias and measure bias
348(1)
19.4 Inertial capability
348(1)
19.5 Inertia of the control process and inertia of the production process
349(3)
19.5.1 Law of composition
349(1)
19.5.2 Disturbances due to bias
350(1)
19.5.3 Definition of the inertial "nde"
350(2)
19.6 Inertia of the control process and total customer inertia (control of reception)
352(1)
19.7 Conclusions
353(1)
19.8 Bibliography
354(1)
Chapter 20 Detection of Areas with Critically Reduced Thickness of Formed Sheet Metal Parts Using Two Oppositely Positioned Fringe Projection Systems
355(16)
Albert Weckenmann
Natasa Petrovic
20.1 Introduction
355(1)
20.2 Methods
356(11)
20.2.1 Measuring system and data fusion
356(4)
20.2.2 Methods of data analysis
360(2)
20.2.3 Algorithm for the calculation of minimal wall thicknesses
362(5)
20.3 Visualization and discussion of results
367(2)
20.4 Summary
369(1)
20.5 Acknowledgments
370(1)
20.6 Bibliography
370(1)
Chapter 21 Variability of the Manufacturing Process in the GPS Framework: A Case Study
371(14)
Manuela De Maddis
Martina Gandini
21.1 Introduction
371(2)
21.2 Variability sources
373(5)
21.2.1 Measurement uncertainty
374(4)
21.2.2 Process variability
378(1)
21.3 Simulations
378(4)
21.3.1 Simulations with independent component analysis (ICA)
379(3)
21.4 Simulation with seasonal trend decomposition (STL)
382(1)
21.5 Summary
383(1)
21.6 Bibliography
384(1)
Chapter 22 Virtual CMM-based Sampling Strategy Optimization
385(20)
Giovanni Moroni
Stefano Petro
22.1 Introduction
385(4)
22.1.1 Conformance to geometric tolerances
386(1)
22.1.2 Evaluating geometric error
387(1)
22.1.3 Goals
388(1)
22.2 State of the art
389(1)
22.3 Proposed methodology
390(5)
22.3.1 Evaluation of Cm
390(1)
22.3.2 Evaluation of Ce
391(1)
22.3.3 Evaluating the uncertainty; the virtual CMM
392(3)
22.3.4 Cost function minimization
395(1)
22.4 Case study
395(4)
22.5 Conclusions
399(2)
22.6 Acknowledgments
401(1)
22.7 Bibliography
401(4)
Chapter 23 Impact of Workpiece Shape Deviations in Coordinate Metrology
405(14)
Gisela Lanza
Jochen Peters
23.1 Introduction
405(2)
23.2 Evaluation in coordinate metrology
407(2)
23.3 The Jackknife
409(1)
23.4 Application to CMM data
410(5)
23.4.1 Resampling point clouds
410(1)
23.4.2 Influence of single measurement points
411(1)
23.4.3 Evaluation uncertainty
412(1)
23.4.4 Example of use
413(2)
23.5 Simulation
415(2)
23.5.1 Simulation procedure
415(1)
23.5.2 Simulation results
416(1)
23.6 Summary and outlook
417(1)
23.7 Bibliography
418(1)
Chapter 24 Quality Assurance of Micro-gears via 3D Surface Characterization
419(12)
Gisela Lanza
Benjamin Viering
24.1 Introduction
419(1)
24.2 Test specimen and experimental equipment
420(1)
24.3 3D characterization
421(7)
24.3.1 Benefits of a 3D characterization
421(2)
24.3.2 Approach
423(5)
24.4 Summary
428(1)
24.5 Acknowledgments
428(1)
24.6 Bibliography
429(2)
Part IV Touerancing in the PLM
431(112)
Chapter 25 Geometric Specification at the Beginning of the Product Lifecycle
433(22)
Renaud Costadoat
Luc Mathieu
Hugo Falgarone
Benoit Fricero
25.1 Introduction
433(3)
25.2 Study of the skeleton
436(6)
25.2.1 Presentation of the models used
436(1)
25.2.2 Description of the mechanism and first simulations
437(4)
25.2.3 Conclusion of the first step
441(1)
25.3 Study of the functional surfaces
442(8)
25.3.1 Presentation of the models used
442(1)
25.3.2 Details of the mechanism and second step of simulation
443(7)
25.3.3 Conclusion of the second step
450(1)
25.4 Specification
450(1)
25.5 Conclusion
451(1)
25.6 Bibliography
452(3)
Chapter 26 Ontological Model of Tolerances for Interoperability in Product Lifecycle
455(14)
Gaurav Ameta
Patrick Hoffmann
26.1 Introduction
455(1)
26.2 Ontology
456(2)
26.2.1 Information modeling as an ontology
457(1)
26.2.2 Choice of ontology language
457(1)
26.3 Literature survey
458(1)
26.4 Ontology of tolerances
459(5)
26.5 Example of tolerance ontology instantiation
464(1)
26.6 Summary
465(1)
26.7 Bibliography
466(3)
Chapter 27 A PLM-Based Multi-Sensor Integration Measurement System for Geometry Processing
469(16)
Zhao Haibin
Nabil Anwer
Pierre Bourdet
27.1 Introduction
469(2)
27.2 Sensor integration methodology
471(4)
27.2.1 System framework
471(2)
27.2.2 Physical integration of multiple sensors
473(1)
27.2.3 Laser guide metrology
474(1)
27.3 Ontology modeling in a PLM-context
475(3)
27.3.1 Description of ontology modeling
476(1)
27.3.2 Ontology modeling in Protege
476(2)
27.4 Geometry processing
478(2)
27.4.1 Shape analysis based on the shape index and curvedness
478(1)
27.4.2 Quality evaluation
479(1)
27.5 Experiments validation
480(2)
27.6 Conclusion
482(1)
27.7 Acknowledgments
483(1)
27.8 Bibliography
483(2)
Chapter 28 Comparison of Gear Geometric Specification Models Regarding the Functional Aspect
485(18)
Jean-Paul Vincent
Jean-Yves Dantan
Gerth Goch
Regis Bigot
28.1 Introduction
485(4)
28.2 Specification models
489(1)
28.3 Comparison method
490(7)
28.3.1 Global approach
490(2)
28.3.2 Geometrical modeling
492(1)
28.3.3 Virtual meshing simulation
493(2)
28.3.4 Virtual metrology
495(1)
28.3.5 Evaluation of the kinematic characteristics
496(1)
28.4 Criteria comparison
497(2)
28.4.1 Objective
497(1)
28.4.2 Example
497(1)
28.4.3 Comparing the results
498(1)
28.5 Conclusion
499(3)
28.6 Bibliography
502(1)
Chapter 29 Effects of Geometric Variation on Perceived Quality
503(18)
Karin Forslund
Rikard Soderberg
29.1 Introduction
503(4)
29.1.1 Types of robustness
504(1)
29.1.2 The product experience
505(1)
29.1.3 Perceived quality of non-nominal products
505(1)
29.1.4 Design as a process of communication
506(1)
29.2 A framework for describing visual robustness to geometric variation
507(4)
29.2.1 Visual reference level
508(3)
29.2.2 Optical level
511(1)
29.2.3 Perception level
512(1)
29.2.4 Response level
513
29.3 Visual fit complexity assessment method
511(6)
29.4 Discussion and conclusions
517(1)
29.5 Bibliography
518(3)
Chapter 30 Geometric Requirement Variations Throughout the Product Lifecycle
521(22)
Guillaume Mandil
Alain Dlesrochers
Alain Riviere
30.1 Introduction
521(1)
30.2 Literature review
522(1)
30.2.1 Related standards
522(1)
30.2.2 Related research
522(1)
30.3 Definitions and concepts
523(2)
30.3.1 Dimensions
523(1)
30.3.2 Functional requirements
524(1)
30.4 Functional requirements throughout lifecycle stages
525(6)
30.4.1 General principles
525(2)
30.4.2 Computational rules
527(4)
30.5 Case study: a simple 1D crosshead guide
531(8)
30.5.1 Hypothesis
531(2)
30.5.2 Dimension driven calculation
533(2)
30.5.3 Functional requirement driven calculation
535(2)
30.5.4 Geometry driven calculation
537(2)
30.6 Conclusion and perspectives
539(1)
30.6.1 High level management of functional requirements
539(1)
30.6.2 Further work
540(1)
30.7 Acknowledgments
540(1)
30.8 Bibliography
541(2)
List of Authors 543(6)
Index 549
Max Giordano is emeritus professor at the University of Savoy France. His research interests include geometry modeling, computer-aided design and computer-aided tolerancing, and he developed the concept of "domain" for the 3-D tolerance analyses and synthesis.

Franēois Villeneuve is Professor at the University of Grenoble (France) and vice-director of the G-SCOP research laboratory. His research interests include Computer Aided Process Planning (CAPP), Knowledge Management, Product Design and Tolerancing. In Tolerancing, he is developing a 3D geometrical model for product defects through the product life cycle.

Luc Mathieu is Professor at the University of Paris-Sud 11, in the Department of Production Engineering (France). He is Director of the Automated Production Research Laboratory (LURPA) in the Ecole Normale Supérieure de Cachan (France). He is also a fellow member of CIRP (International Academy of Production Engineering). His research interests include geometry, computer-aided tolerancing, coordinates metrology and digital production engineering.