|
|
1 | (6) |
|
2 Prelude: Profinite Integers |
|
|
7 | (18) |
|
|
7 | (1) |
|
|
8 | (5) |
|
2.3 Profinite Natural Integers |
|
|
13 | (2) |
|
2.4 Zero Set of a Recognizable Series |
|
|
15 | (3) |
|
|
18 | (1) |
|
|
18 | (2) |
|
|
18 | (2) |
|
|
20 | (1) |
|
|
20 | (1) |
|
|
20 | (3) |
|
|
20 | (2) |
|
|
22 | (1) |
|
|
22 | (1) |
|
|
23 | (2) |
|
3 Profinite Groups and Semigroups |
|
|
25 | (62) |
|
|
25 | (1) |
|
3.2 Topological and Metric Spaces |
|
|
25 | (7) |
|
|
26 | (3) |
|
|
29 | (1) |
|
|
30 | (2) |
|
3.3 Topological Semigroups |
|
|
32 | (6) |
|
3.3.1 Semigroups and Monoids |
|
|
32 | (2) |
|
3.3.2 Interplay Between Algebra and Topology |
|
|
34 | (2) |
|
|
36 | (2) |
|
|
38 | (1) |
|
3.5 Quotients of Compact Semigroups |
|
|
39 | (2) |
|
3.6 Ideals and Green's Relations |
|
|
41 | (5) |
|
|
41 | (2) |
|
|
43 | (1) |
|
3.6.3 The Schutzenberger Group |
|
|
44 | (2) |
|
|
46 | (3) |
|
|
49 | (4) |
|
3.9 Profinite Semigroups: Definition and Characterizations |
|
|
53 | (3) |
|
3.10 Profinite Groups and Profinite Monoids |
|
|
56 | (1) |
|
3.11 The Profinite Distance |
|
|
57 | (1) |
|
3.12 Profinite Monoids of Continuous Endomorphisms |
|
|
58 | (2) |
|
|
60 | (8) |
|
|
60 | (3) |
|
|
63 | (1) |
|
|
63 | (1) |
|
|
64 | (3) |
|
|
67 | (1) |
|
|
67 | (1) |
|
|
67 | (1) |
|
|
68 | (1) |
|
|
68 | (16) |
|
|
68 | (5) |
|
|
73 | (1) |
|
|
74 | (1) |
|
|
75 | (5) |
|
|
80 | (1) |
|
|
80 | (1) |
|
|
81 | (2) |
|
|
83 | (1) |
|
|
84 | (3) |
|
4 Free Profinite Monoids, Semigroups and Groups |
|
|
87 | (52) |
|
|
87 | (1) |
|
4.2 Free Monoids and Semigroups |
|
|
88 | (5) |
|
|
93 | (3) |
|
4.4 Free Profinite Monoids and Semigroups |
|
|
96 | (8) |
|
4.5 Pseudowords as Operations |
|
|
104 | (2) |
|
4.6 Free Profinite Groups |
|
|
106 | (5) |
|
4.7 Presentations of Profinite Semigroups |
|
|
111 | (4) |
|
|
115 | (3) |
|
4.9 Relatively Free Profinite Monoids and Semigroups |
|
|
118 | (3) |
|
|
121 | (4) |
|
|
121 | (1) |
|
|
122 | (1) |
|
|
123 | (1) |
|
|
123 | (1) |
|
|
124 | (1) |
|
|
124 | (1) |
|
|
125 | (1) |
|
|
125 | (1) |
|
|
125 | (10) |
|
|
125 | (2) |
|
|
127 | (1) |
|
|
128 | (2) |
|
|
130 | (1) |
|
|
131 | (1) |
|
|
132 | (2) |
|
|
134 | (1) |
|
|
134 | (1) |
|
|
135 | (4) |
|
|
139 | (30) |
|
|
139 | (1) |
|
|
140 | (1) |
|
|
140 | (3) |
|
5.4 Block Maps and Conjugacy |
|
|
143 | (2) |
|
5.5 Substitutive Shift Spaces |
|
|
145 | (8) |
|
5.5.1 Primitive Substitutions |
|
|
145 | (2) |
|
5.5.2 Matrix of a Substitution |
|
|
147 | (3) |
|
5.5.3 Recognizable Substitutions |
|
|
150 | (3) |
|
5.6 The Topological Closure of a Uniformly Recurrent Set |
|
|
153 | (5) |
|
5.6.1 Uniformly Recurrent Pseudowords |
|
|
153 | (4) |
|
5.6.2 The J-Class of a Uniformly Recurrent Set |
|
|
157 | (1) |
|
5.7 Generalization to Recurrent Sets |
|
|
158 | (2) |
|
|
160 | (2) |
|
|
160 | (1) |
|
|
160 | (1) |
|
|
160 | (1) |
|
|
161 | (1) |
|
|
162 | (1) |
|
|
162 | (6) |
|
|
162 | (1) |
|
|
163 | (1) |
|
|
164 | (1) |
|
|
165 | (2) |
|
|
167 | (1) |
|
|
168 | (1) |
|
6 Sturmian Sets and Tree Sets |
|
|
169 | (26) |
|
|
169 | (1) |
|
|
170 | (2) |
|
6.2.1 Left and Right Return Words |
|
|
170 | (2) |
|
|
172 | (3) |
|
|
175 | (4) |
|
|
179 | (5) |
|
6.6 Sequences of Return Sets |
|
|
184 | (3) |
|
|
187 | (2) |
|
|
189 | (1) |
|
|
189 | (1) |
|
|
189 | (1) |
|
|
190 | (1) |
|
|
190 | (1) |
|
|
190 | (4) |
|
|
190 | (1) |
|
|
191 | (2) |
|
|
193 | (1) |
|
|
193 | (1) |
|
|
194 | (1) |
|
7 The Schutzenberger Group of a Minimal Set |
|
|
195 | (20) |
|
|
195 | (1) |
|
7.2 Invariance of the Schutzenberger Group |
|
|
196 | (3) |
|
7.3 A Sufficient Condition for Freeness |
|
|
199 | (2) |
|
7.4 Groups of Substitutive Shifts |
|
|
201 | (7) |
|
7.4.1 Proper Substitutions |
|
|
207 | (1) |
|
|
208 | (2) |
|
|
208 | (1) |
|
|
209 | (1) |
|
|
209 | (1) |
|
|
210 | (3) |
|
|
210 | (1) |
|
|
211 | (1) |
|
|
212 | (1) |
|
|
213 | (2) |
|
|
215 | (50) |
|
|
215 | (1) |
|
8.2 Prefix Codes in Factorial Sets |
|
|
216 | (5) |
|
|
217 | (1) |
|
8.2.2 Maximal Prefix Codes |
|
|
217 | (2) |
|
8.2.3 Minimal Automata of Prefix Codes |
|
|
219 | (2) |
|
8.3 Bifix Codes in Recurrent Sets |
|
|
221 | (8) |
|
|
221 | (1) |
|
|
222 | (2) |
|
8.3.3 Complete Bifix Codes |
|
|
224 | (5) |
|
8.4 Bifix Codes in Tree Sets |
|
|
229 | (3) |
|
8.4.1 Cardinality Theorem |
|
|
229 | (1) |
|
8.4.2 The Finite Index Basis Theorem |
|
|
230 | (2) |
|
8.5 The Syntactic Monoid of a Recognizable Bifix Code |
|
|
232 | (8) |
|
8.5.1 The F-Minimum J-Class |
|
|
232 | (2) |
|
8.5.2 The F-Group as a Permutation Group |
|
|
234 | (4) |
|
8.5.3 The Minimal Automaton of a Recognizable Bifix Code |
|
|
238 | (2) |
|
8.6 The Charged Code Theorem |
|
|
240 | (6) |
|
|
241 | (1) |
|
8.6.2 The Charged Code Theorem: Statement and Examples |
|
|
242 | (4) |
|
8.7 Bifix Codes in the Free Profinite Monoid |
|
|
246 | (2) |
|
8.8 Proof of the Charged Code Theorem |
|
|
248 | (7) |
|
8.8.1 A Byproduct of the Proof of the Charged Code Theorem |
|
|
253 | (2) |
|
|
255 | (3) |
|
|
255 | (1) |
|
|
255 | (2) |
|
|
257 | (1) |
|
|
257 | (1) |
|
|
258 | (1) |
|
|
258 | (1) |
|
|
258 | (5) |
|
|
258 | (1) |
|
|
259 | (2) |
|
|
261 | (1) |
|
|
262 | (1) |
|
|
262 | (1) |
|
|
262 | (1) |
|
|
263 | (2) |
Bibliography |
|
265 | (4) |
Subject Index |
|
269 | (6) |
Index of symbols |
|
275 | |