Atnaujinkite slapukų nuostatas

Progress in Inverse Spectral Geometry Softcover reprint of the original 1st ed. 1997 [Minkštas viršelis]

  • Formatas: Paperback / softback, 197 pages, aukštis x plotis: 235x155 mm, weight: 332 g, V, 197 p., 1 Paperback / softback
  • Serija: Trends in Mathematics
  • Išleidimo metai: 12-Oct-2012
  • Leidėjas: Birkhauser Verlag AG
  • ISBN-10: 3034898355
  • ISBN-13: 9783034898355
Kitos knygos pagal šią temą:
  • Formatas: Paperback / softback, 197 pages, aukštis x plotis: 235x155 mm, weight: 332 g, V, 197 p., 1 Paperback / softback
  • Serija: Trends in Mathematics
  • Išleidimo metai: 12-Oct-2012
  • Leidėjas: Birkhauser Verlag AG
  • ISBN-10: 3034898355
  • ISBN-13: 9783034898355
Kitos knygos pagal šią temą:
most polynomial growth on every half-space Re (z) ::::: c. Moreover, Op(t) depends holomorphically on t for Re t > O. General references for much of the material on the derivation of spectral functions, asymptotic expansions and analytic properties of spectral functions are [ A-P-S] and [ Sh], especially Chapter 2. To study the spectral functions and their relation to the geometry and topology of X, one could, for example, take the natural associated parabolic problem as a starting point. That is, consider the 'heat equation': (%t + p) u(x, t) = 0 { u(x,O) = Uo(x), tP which is solved by means of the (heat) semi group V(t) = e- ; namely, u(·, t) = V(t)uoU· Assuming that V(t) is of trace class (which is guaranteed, for instance, if P has a positive principal symbol), it has a Schwartz kernel K E COO(X x X x Rt,E* ®E), locally given by 00 K(x,y; t) = L>-IAk(~k ® 'Pk)(X,y), k=O for a complete set of orthonormal eigensections 'Pk E COO(E). Taking the trace, we then obtain: 00 tA Op(t) = trace(V(t)) = 2::>- k. k=O Now, using, e. g. , the Dunford calculus formula (where C is a suitable curve around a(P)) as a starting point and the standard for­ malism of pseudodifferential operators, one easily derives asymptotic expansions for the spectral functions, in this case for Op.

Daugiau informacijos

Springer Book Archives
Spectral Geometry: An Introduction and Background Material for this
Volume.- Geometry Detected by a Finite Part of the Spectrum.- Spectral
Geometry on Nilmanifolds.- Upper Bounds for the Poincaré Metric Near a
Fractal Boundary.- Construction de Variétés Isospectrales du Théorčme de T.
Sunada.- Inverse spectral theory for Riemannian foliations and curvature
theory.- Computer Graphics and the Eigenfunctions for the Koch Snowflake
Drum.- Inverse Spectral Geometry.- Inverse Spectral Geometry on Riemann
Surfaces.- Quantum Ergodicity.